Document Control

Title	HRA - Solent Maritime SAC – Light otter trawl (sandeels)	
SIFCA Reference	HRA/06/004	
Author	V Gravestock	
Approver		
Owner	V Gravestock	
Template Used	HRA Template v1.1	

Revision History

Date	Author	Version	Status	Reason	Approver(s)
23/12/2015	V Gravestock	1.0	Draft	Initial Draft	
06/04/2016	V Gravestock	1.2	Draft	In- combination effects	
21/04/2016	V Gravestock	1.3	Draft	QA by SP	
06/07/2016	S Pengelly	1.4	Draft	NE feedback	
11/08/2016	V Gravestock	1.5	Final Draft	Inclusion of new shellfish manageme nt measures	
28/09/2016	V Gravestock	1.5	FINAL		

This document has been distributed for information and comment to:

Title	Name	Date sent	Comments received
HRA – Solent Maritime SAC – Light otter trawl (sandeels) (v1.0)	Natural England	08/02/2016	30/03/2016
HRA – Solent Maritime SAC – Light otter trawl (sandeels) (v1.3)	Natural England	21/04/2016	12/05/2016

Southern Inshore Fisheries and Conservation Authority (IFCA)

Fisheries in EMS Habitats Regulations Assessment for amber and green risk categories

European Marine Site: Solent Maritime SAC (UK0030059)

Feature(s): Estuaries; Mudflats and sandflats not covered by seawater at low tide

Generic Feature(s): -

Site Specific Sub-feature(s): Intertidal mud communities; Intertidal mudflat and sandflat communities; Intertidal mixed sediment communities; Intertidal muddy sand communities; Intertidal sand communities; Subtidal sediment communities

Generic Sub-feature(s): Intertidal mud; Intertidal mud and sand; Intertidal mixed sediments; (Intertidal sand and muddy sand); Subtidal gravel and sand, Subtidal muddy sand, Subtidal mud, (Subtidal mixed sediments; Subtidal sand)¹

Gear type(s) Assessed: Light otter trawl (sandeels)

¹ These are additional sub-features in brackets are those used in feature mapping provided by Natural England.

Table of Contents

Document Control	1
1. Introduction	
1.1 Need for an HRA assessment	
1.2 Documents reviewed to inform this assessment	
2. Information about the EMS	
2.1 Overview and qualifying features	6
2.2 Conservation Objectives	6
3. Interest feature(s) of the EMS categorised as 'Red' risk and overview of management	
measure(s)	7
4. Information about the fishing activities within the site	7
4.1 Activities under Consideration/Summary of Fishery	7
4.2 Technical Gear Specifications	
4.3 Location, Effort and Scale of Fishing Activities	
5. Test of Likely Significant Effect (TLSE)	
5.1 Table 2: Summary of LSE Assessment(s) – Subtidal sub-features	
5.2 Table 3: Summary of LSE Assessment(s) – Intertidal sub-features	
6. Appropriate Assessment	17
6.1 Co-location of Fishing Activity and Site Features/Sub-feature(s)	
6.2 Potential Impacts	
6.2.1 Physical disturbance	17
6.2.2 Biological disturbance	.19
6.2.3 Chemical disturbance	.26
6.2.4 Natural disturbance	.26
6.2.4 Sensitivity	.27
6.2.5 Recovery	.29
6.3 Site Condition	33
6.4 Existing Management Measures	
6.5 Table 8: Summary of Impacts	
7. Conclusion	
8. In-combination assessment	70
8.1 Other plans and project	70
8.2 Other fishing activities	
9. Summary of consultation with Natural England	75
10. Integrity test	75
Annex 1: Reference list	77
Annex 2: The Key Principles of the SEMS Management Scheme	
(http://www.solentems.org.uk/sems/management_scheme/)	
Annex 3: Site Feature/Sub-feature Map(s) for Solent Maritime SAC (Langstone and Chichester	
Harbours portion)	
Annex 4: Fishing Activity Map(s) using Trawl Sightings Data from 2005-2015 (2005-2010 & 201	1-
2015) in Langstone Harbour.	
Annex 5: Co-Location of Fishing Activity using Trawl Sightings (2005 to 2015, broken down by	
2005-2010 & 2011-2015) and Site Feature(s)/Sub-feature(s) (Langstone Harbour)	
Annex 6: Co-location of Historic Trawl Sightings (2005-2011, 2012-2015), Clam Dredging (2012	
2015) Oyster Dredging (2012, 2014-2015) Sightings the Langstone and Chichester portions of t	the
Solent Maritime SAC	. 92

1. Introduction

1.1 Need for an HRA assessment

Southern IFCA has duties under Regulation 9(3) of the Conservation of Habitats and Species Regulations 2010 as a competent authority, with functions relevant to marine conservation to exercise those functions so as to secure compliance with the Habitats Directive. Article 6.2 of the Habitats Directive requires appropriate steps to be taken to avoid, in Natura 2000 sites, the deterioration of natural habitats and habitats of species as well as significant disturbance of the species for which the area has been classified.

Management of European Marine Sites is the responsibility of all competent authorities which have powers or functions which have, or could have, an impact on the marine area within or adjacent to a European Marine Site (EMS). Under section 36 of the Species and Habitats Regulations (2010):

"The relevant authorities, or any of them, may establish for a European marine site a management scheme under which their functions (including any power to make byelaws) are to be exercised so as to secure in relation to that site compliance with the requirements of the Habitats Directive."

Within the Solent EMS such a management scheme has been developed in the form of the SEMS management scheme which was established in 2004. This resulted in the establishment of a framework for the effective management of the Solent EMS so that the conservation objectives are met. The key principles of the management scheme are included in Annex 2.

In the SEMs Management Group 2015 Monitoring Report, fishing activities have been flagged to be a high risk or (Tier 1) activity. High risk activities are considered as potentially representing a high risk and/or not having sufficient "systems in place to ensure they are managed in line with the Habitats Regulations" and, therefore, requiring further management consideration. During the 2015 consultation a request was made to reduce the risk of fishing activity from high to medium risk. The response from the group was that in order to do this a clear audit and evidence trail would be required to reduce the risk. This assessment, in line with Article 6.2 of the Habitats Directives, will form part of that audit trail, as will other assessments regarding the fishing activities within the Solent EMS. It is considered that some level of management will be required for high risk activities within the EMS.

This audit trail will be achieved through Southern IFCA's responsibilities under the revised approach to the management of commercial fisheries in European Marine sites announced by the Department for Environment, Food and Rural Affairs (DEFRA).

The objective of this revised approach is to ensure that all existing and potential commercial fishing activities in European Marine Sites are managed in accordance with Article 6 of the Habitats Directive. Articles 4.1 and 4.2 of the Birds Directive also require that the Member States ensure the species mentioned in Annex I and regularly occurring migratory bird species are subject to special conservation measures concerning their habitat in order to ensure survival and reproduction in their area of distribution. This affords Special Protection Areas (SPAs) a similar protection regime to that of Special Areas of Conservation (SACs).

This approach is being implemented using an evidence-based, risk-prioritised, and phased approach. Risk prioritisation is informed by using a matrix of the generic sensitivities of the sub-features of the EMS to a suite of fishing activities as a decision making tool. These sub-feature-

activity combinations have been categorised according to specific definitions, as red², amber³, green⁴ or blue⁵.

Activity/feature interactions identified within the matrix as red risk have the highest priority for implementation of management measures by the end of 2013 in order to avoid the deterioration of Annex I features in line with obligations under Article 6(2) of the Habitats Directive.

Activity/feature interactions identified within the matrix as amber risk require a site-level assessment to determine whether management of an activity is required to conserve site features. Activity/feature interactions identified within the matrix as green also require a site level assessment if there are "in-combination effects" with other plans or projects.

Site level assessments are being carried out in a manner that is consistent with the provisions of Article 6(3) of the Habitats Directive, but are required to meet the 6(2) responsibilities of Southern IFCA as a competent authority. The aim of the assessment will be to consider if the activity could significantly disturb the species or deteriorate natural habitats or the habitats of the protected species and from this, a judgement can be made as to whether or not the conservation measures in place are appropriate to maintain and restore the habitats and species for which the site has been designated to a favourable conservation status (Article 6(2)). If measures are required, the revised approach requires these to be implemented by 2016.

The purpose of this site specific assessment document is to assess whether or not in the view of Southern IFCA the fishing activity 'Light otter trawling' has a likely significant effect on 'Estuaries' of the Solent Maritime SAC; and on the basis of this assessment whether or not it can be concluded that light otter trawling will not have an adverse effect on the integrity of this EMS. Light otter trawling considered in this assessment is for sandeels and is only known to take place within the Langstone Harbour portion of the Solent Maritime SAC. Subtidal and intertidal sub-features within Langstone Harbour are assumed to form part of the 'Estuaries' feature. Beam trawling (whitefish) and light otter trawling in the remainder of the Solent Maritime SAC are considered under a separate assessment.

1.2 Documents reviewed to inform this assessment

- SEMs Annual Monitoring Report 2015
- SEMs Delivery Plan 2014
- Natural England's risk assessment Matrix of fishing activities and European habitat features and protected species⁶
- Reference list⁷ (Annex 1)

² Where it is clear that the conservation objectives for a feature (or sub-feature) will not be achieved because of its sensitivity to a type of fishing, - irrespective of feature condition, level of pressure, or background environmental conditions in all EMSs where that feature occurs – suitable management measures will be identified and introduced as a priority to protect those features from that fishing activity or activities.

³ Where there is doubt as to whether the conservation objectives for a feature (or sub-feature) will be achieved because of its sensitivity to a type of fishing, in all EMSs where that feature occurs, the effect of that activity or activities on such features will need to be assessed in detail at a site specific level. Appropriate management action should then be taken based on that assessment.

⁴ Where it is clear that the achievement of the conservation objectives for a feature is highly unlikely to be affected by a type of fishing activity or activities, in all EMSs where that feature occurs, further action is not likely to be required, unless there is the potential for in combination effects.

⁵ For gear types where there can be no feasible interaction between the gear types and habitat features, a fourth categorisation of blue is used, and no management action should be necessary.

⁶ See Fisheries in EMS matrix:

http://www.marinemanagement.org.uk/protecting/conservation/documents/ems_fisheries/populated_matrix3.xls

- Natural England's Regulation 33 advice⁸/ Natural England's Interim Conservation Advice
- Site map(s) sub-feature/feature location and extent (Annex 3)
- Fishing activity data (map(s), etc) (Annex 4)
- Fisheries Impact Evidence Database (FIED)

2. Information about the EMS

• Solent Maritime SAC (UK0030059)

2.1 Overview and qualifying features

- H1110. Sandbanks which are slightly covered by sea water all the time
- H1130. Estuaries
 - Intertidal mudflat & sandflat communities
 - Intertidal mixed sediment communities
 - Subtidal sediment communities
- H1140. Mudflats and sandflats not covered by seawater at low tide
 - Intertidal mud communities
 - Intertidal muddy sand communities
 - Intertidal sand communities
 - Intertidal mixed sediment communities
- H1150. Coastal lagoons*
- H1210. Annual vegetation of drift lines
- H1220. Perennial vegetation of stony banks; Coastal shingle vegetation outside the reach of waves
- H1310. Salicornia and other annuals colonising mud and sand; Glasswort and other annuals colonising mud and sand
- H1320. Spartina swards (Spartinion maritimae); Cord-grass swards
- H1330. Atlantic salt meadows (*Glauco-Puccinellietalia maritimae*)
- H2120. Shifting dunes along the shoreline with *Ammophila arenaria* ("white dunes"); Shifting dunes with marram
- S1016. Vertigo moulinsiana; Desmoulin`s whorl snail

Please refer to Annex 3 for a site feature map.

The Solent Maritime SAC is located in one of only a few major sheltered channels in Europe, lying between a substantial island (the Isle of Wight) and the mainland. The Solent and its inlets are unique in Britain and Europe for their complex tidal regime, with long periods of tidal stand at high and low tide, and for the complexity and particularly dynamic nature of the marine and estuarine habitats present within the area. There is a wide variety of marine sediment habitats influenced by a range of salinities, wave shelter and intensity of tidal streams, resulting in a uniquely complex site. Sediment habitats within the estuaries include extensive areas of estuarine flats, with intertidal areas often supporting eelgrass *Zostera sp.* and green algae, saltmarshes and natural shoreline transitions, such as drift line vegetation.

2.2 Conservation Objectives

⁸ Solent EMS Regulation 33 Conservation Advice: <u>http://publications.naturalengland.org.uk/publication/3194402</u>

⁷ Reference list will include literature cited in the assessment (peer, grey and site specific evidence e.g. research, data on natural disturbance/energy levels etc)

The Conservation Objectives for the Solent Maritime SAC features:

• H1130. Estuaries

Are to "ensure that the integrity of the site is maintained or restored as appropriate, and ensure that the site contributes to achieving the Favourable Conservation Status of its Qualifying Features, by maintaining or restoring;

- The extent and distribution of qualifying natural habitats and habitats of qualifying species
- The structure and function (including typical species) of qualifying natural habitats
- The structure and function of the habitats of qualifying species
- The supporting processes on which qualifying natural habitats and the habitats of qualifying species rely
- The populations of qualifying species, and,
- The distribution of qualifying species within the site."

The high level conservation objectives for the Solent Maritime SAC are available online at: <u>http://publications.naturalengland.org.uk/publication/5762436174970880</u>

3. Interest feature(s) of the EMS categorised as 'Red' risk and overview of management measure(s)

• Subtidal eelgrass *Zostera marina* beds

A red risk interaction between bottom towed gears and eelgrass/seagrass beds was identified and subsequently addressed through the creation of the 'Bottom Towed Fishing Gear' byelaw⁹ and 'Prohibition of Gathering (Sea Fisheries Resources) in Seagrass Beds' byelaw¹⁰. The 'Bottom Towed Fishing Gear' prohibits the use any bottom towed fishing gear within sensitive areas (characterised by reef features or eelgrass/seagrass beds) in European Marine Sites throughout the district. The byelaw also states that if transiting through a prohibited area carrying bottom towed fishing gear, all parts of the gear are inboard and above the sea. Within the Solent EMS, which includes waters to the north of the Isle of Wight, all eastern harbours and Southampton Water, there are 20 prohibited areas. The 'Prohibition of Gathering (Sea Fisheries Resources) in Seagrass Beds' byelaw prevents digging, fishing for or taking any sea fisheries resource in or from prohibited areas containing eelgrass/seagrass beds in European Marine Sites throughout the District. Exceptions to the prohibition include if a net, rod and line or hook and line are used, in addition to the use of a vessel as long as the vessel's hull is not in contact with the seabed. It is also prohibited to carry a rake, spade, fork or any similar tool within specified areas. Within the Solent EMS, which includes north of the Isle of Wight, all eastern harbours and Southampton Water, there are 25 prohibited areas.

4. Information about the fishing activities within the site

4.1 Activities under Consideration/Summary of Fishery

Light otter trawling in Langstone Harbour is used to target sandeels (*Ammodytes tobianus*) and is focused during the summer months from May to October (Southern IFCA Committee Member

⁹ Bottom Towed Fishing Gear Byelaw:

https://secure.toolkitfiles.co.uk/clients/25364/sitedata/files/PDFbyelaw_bottomtowedfishi.pdf ¹⁰ Prohibition of Gathering (Sea Fisheries Resources) in Seagrass Beds Byelaw: https://secure.toolkitfiles.co.uk/clients/25364/sitedata/files/PDFbyelaw_prohibitionofgat.pdf

Pers. Comm)¹¹. The species is collected and used for purposes of bait and not human consumption.

4.2 Technical Gear Specifications

An otter trawl comprises of following design (see Figure 1). Two shaped panels of netting are laced together at each side to form an elongated funnel shaped bag (Seafish, 2015). The funnel tapers down to a cod-end where fish are collected (Seafish, 2015). The remaining cut edges of the net and net mouth are strengthened by lacing them to ropes to form 'wings' that are used to drive fish into the net (Seafish, 2015). The upper edge of the rope is referred to as the head line, the lower edge is referred to as the foot rope of fishing line and side ropes are known as wing lines (Seafish, 2015). Floats are attached to the headline to hold the net open and the foot rope is weighted to maintain contact with the seabed and prevent damage to the net (Seafish, 2015). The wings of the net are held open by a pair of trawl doors, also known as otter boards, and are attached to the wings by wires, ropes or chains known as bridles and sweeps (Seafish, 2015). The sweep connects the trawl door to top and bottom bridles which are attached to the headline and footrope of the net, respectively (Seafish, 2015). The choice of material used for the sweeps and bridles depends on the size of gear and nature of the seabed, with smaller inshore boats using thin wire and combination rope (Seafish, 2015). The trawl doors, which are made of wood or steel are towed through the water at an angle which causes them to spread apart and open the net in a horizontal direction (Seafish, 2015). The trawl doors are attached to the fishing vessel using wires referred to as trawl warps (Seafish, 2015). The trawl doors must be heavy enough to keep the net on the seabed as it is towed (Seafish, 2015). As the trawl doors are towed along the seabed they generate a sediment cloud which helps to herd fish towards the mouth of the trawl (Seafish, 2015). The bridles and sweeps continue the herding action of the trawl doors as they trail on the seabed and disturb the sediment, creating a sediment cloud (Seafish, 2015). The length of the sweeps and bridles and distance between the two trawl doors is tuned to the target species (Seafish, 2015). Species such as lemon sole and plaice can be herded into the trawl over long distances and so the length of the sweeps is longer (Seafish, 2015).

Figure 1. Key components of an otter trawl. Source: <u>www.seafish.org/upload/b2b/file/r_d/BOTTOM%20TRAWL_5a.pdf</u>

The mesh size of the net used varies depending on the type of trawl (Seafish, 2015). In the UK, there has been a move towards an increase in mesh size, particularly in the top panel and wings,

¹¹ Information was provided by a Southern IFCA Committee Member who has valuable knowledge and experience of the fishery.

in order to improve gear selectivity (Seafish, 2015). When fishing for sandeels, a mesh size of less than 16 mm is used.

The ground rope will have some form of ground gear attached to protect the netting from damage on the seabed (Seafish, 2015). The ground gear can largely vary. The most basic is where bare fishing line and the netting is laced directly to the rope of combination rope (Seafish, 2015). Chains may also be used and the style of attachment can vary (Seafish, 2015). Ground gear may also include bobbins and rock hoppers which commonly use small and large rubber discs (up to 600 mm) (Seafish, 2015).

The drag of the gear, combined with the floats on the headline, mean the weight of the trawl on the seabed is in the region of 10 to 20% of what it would be in air (Seafish, 2015).

A light otter trawl is one that uses anything less than the definition given for a heavy otter trawl, which include any of the following (MMO, 2014):

- Sheet netting of greater than 4 mm twine thickness
- Rockhoppers or discs of 200 mm or above in diameter
- A chain for the foot/ground line (instead of wire)

Generally, vessels will shoot and haul their gear over the stern of the boat (Seafish, 2015).

Restrictions on vessels over 12 metres in length in the Southern IFCA district limits the size of gear that can be used within the district. The sizes of boats engaged in light otter trawling for sandeels range between 6 and 10 metres and are largely powered by outboard motors (Southern IFCA Committee Member Pers. Comm). The gear used to fish for sandeels is relatively small and considered to be very light, as it commonly hauled by hand (Southern IFCA Committee Member Pers. Comm). The area fished is relatively confined and limits the size of the gear that can be used (Southern IFCA Committee Member Pers. Comm). The weight of a trawl used by a 10 m boat is approximately 65 kg and 40 kg for smaller boats (6 to 8 m). Trawl doors are made of wood and there is no standard weight or size (Southern IFCA Committee Member Pers. Comm). A light otter trawl with a ground rope of 20 ft has doors of 18 by 12 inches and a ground rope of 24 ft has doors of 24 by 16 inches (Southern IFCA Committee Member Pers. Comm). The ground rope used is referred to as a 'rope foot rope' and is comprised of a piece of light wire with rope wrapped around it. (Southern IFCA Committee Member Pers. Comm). The set up used is designed to have minimal contact with the seabed and remain above the seabed (Southern IFCA Committee Member Pers. Comm). The length of the sweeps and bridles is approximately 20 ft (6 m) and length of the warps is approximately 114 ft (35 m) (Southern IFCA Committee Member Pers. Comm). The maximum width across the entrance is approximately 3 m. Trawls are towed at between 1.5 and 2 knots and the length of a tow can be up to approximately 200 metres (Southern IFCA Committee Member Pers. Comm).

4.3 Location, Effort and Scale of Fishing Activities

Trawling takes place at high tide and is generally focused subtidally, however can occur on the fringes of the intertidal. The activity is concentrated within the main channels in the southern and central parts of the harbour, particularly in an area known as Sword Sands (Annex 4).

Sightings data in Annex 4, (split between 2005 to 2010 and 2011 to 2015) illustrates that trawling is focused subtidally in the main channels, within the central and southern of the harbour. Sightings data is only available between 2005 and 2010. The majority of these sightings are concentrated within a small area where the main channel splits into the Broom Channel and

Langstone Channel, south of Sword Sands. A limited number of sightings show the activity occurring in Mallard Sands, slightly north west of Sword Sands and in the north eastern quarter of the harbour near Penner. The north eastern quarter is an area known for clam dredging and it is likely these sightings may have been mistaken for trawling. Please note that Southern IFCA's sightings data may reflect home ports of patrol vessels, high risk areas and typical patrol routes and therefore are only indicative of fishing activity. Over the ten year period covered by sightings data (2005-2015), it is likely that the geographical extent of the fishery is well reflected however intensity may be skewed by aforementioned factors.

The total number of vessels operating within the fishery is approximately 5, with up to 1 or 2 vessels operating every day during the summer months (May to October). The confined area in which fishing takes place means the number of boats is limited to 3 to 4 at any one time (Southern IFCA Committee Member Pers. Comm).

Table 1 shows data collected by Langstone Harbour Board on the number of vessels sighted to be towing fishing gear within Langstone Harbour. This can include clam dredging, oyster dredging and trawling. Only vessels known to engage in trawling were included within Table 1 and whilst this is likely to exclude other forms of fishing activity (clam dredging and oyster dredging), vessels often engage in more than one type of fishing activity and therefore the sightings data presented in table 1 is likely to be an overestimate. Two of the vessels included within the analysis are also known to undertake trawling and shellfish dredging as part of scientific surveys and can be eliminated from the analysis from referring to the number of fishing sighted twice or more. The sightings data show a decline in the average number of vessels sighted from 2.1 in 2013 to 1 in 2015. The maximum number of vessels sighted was in July 2013 at 5. Over the three year period, there were only three instances where vessels were sighted 10 times or more in one month and nine instances where vessels were sighted over 5 times or more in one month. In 2014, the number of vessels sighted per month shows a clear increase from May until September. In other years this trend is not as clear, although in both 2013 and 2015, the highest numbers of vessels sighted per month is highest in July. Overall, the sightings reflect a relatively low level of fishing activity within Langstone Harbour.

The location of these fishing vessels was not recorded up until March 2015, when the location of a vessel engaged in fishing was recorded within a sector of the harbour (North Langstone Channel, Broom Channel, Russells Lake, South Salterns, Langstone Channel, Sinah Lake and Eastney Lake). From March to December 2015, sectors where filtered sightings data have been recorded include once in Russells Lake and Broom Channel, twice in Langstone Channel and South Salterns and three times in North Langstone Channel. Two vessels sighted in these areas undertake trawling and shellfish dredging as part of scientific surveys. Excluding these vectors, sectors where sightings data have been recorded include once in North Langstone Channel, Langstone Channel, South Salterns and Russells Lake.

Table 1. Sightings of fishing vessels towing gear in Langstone Harbour
between November 2012 and December 2015. Only vessels known to trawl
were included. Data was provided by Langstone Harbour Board.

Year	Month	No. of fishing vessels sighted	No. of fishing vessels sighted twice or more	vessels sighted	No. of fishing vessels sighted 10 times or more
	Jan				
	Feb				
2012	Mar				
	Apr				
	May				

	-				
	Jun				
	Jul				
	Aug				
	Sep				
	Oct				
	Nov	3	2	2	0
	Dec	3	1	0	0
	Average	3	1.5	1	0
	Jan	1	1	0	0
		2	1		0
	Feb			0	
	Mar	2	1	0	0
	Apr	3	1	0	0
	May	2	0	0	0
	Jun	2	1	0	0
2013	Jul	5	2	0	0
	Aug	1	0	0	0
	Sep	1	0	0	0
	Oct	3	1	0	0
	Nov	3	1	0	0
	Dec	0	0	0	0
	Total	2.1	0.8	0	0
	Jan	1	0	0	0
	Feb	1	0	0	0
	Mar	1	0	0	0
	Apr	0	0	0	0
	May	4	4	0	0
	Jun	3	3	2	1
2014	Jul	3	2	2	2
	Aug	2	1	0	0
	Sep	4	1	0	0
		1	0		0
	Oct			0	
	Nov	0	0	0	0
	Dec	0	0	0	0
	Average	1.7	0.9	0.3	0.3
	Jan	2	1	1	0
	Feb	2	0	0	0
	Mar	0	0	0	0
	Apr	0	0	0	0
	Мау	0	0	0	0
	Jun	0	0	0	0
2015	Jul	3	1	0	0
	Aug	1	1	0	0
	Sep	2	0	0	0
	Oct	1	0	0	0
				1	
		1	1	0	0
	Nov Dec	1 0	1 0	0 0	0

The sandeels caught are used for the purposes of bait and not human consumption. This means the catch levels are very low with a commercially licensed vessel catching approximately 1 kg of sandeels a day (Southern IFCA Committee Member Pers. Comm).

5. Test of Likely Significant Effect (TLSE)

The Habitats Regulations assessment (HRA) is a step-wise process and is first subject to a coarse test of whether a plan or project will cause a likely significant effect on an EMS¹². Each feature/sub-feature was subject to a separate TLSE, so the results are summarised in Tables 2 and 3.

5.1 Table 2: Summary of LSE Assessment(s) – Subtidal sub-features

1. Is the activity/activities directly	No
connected with or necessary to	
the management of the site for	
nature conservation?	
2. What potential pressures,	Regulation 33 CA/Interim CA:
exerted by the gear type(s), are	1. Physical loss - removal
likely to affect the feature(s)/sub-	2. Physical loss - smothering
feature(s)?	3. Physical damage – siltation/ Siltation rate changes
	(low), including smothering/ Siltation rate changes
	(high), including smothering
	4. Physical damage – abrasion/ Abrasion/disturbance
	of the substrate on the surface of the seabed/
	Penetration and/or disturbance of the substrate
	below the surface of the seabed, including abrasion
	 Toxic contamination - introduction of synthetic/non- synthetic compounds
	 Non-toxic contamination - changes in nutrient loading/organic loading/ Organic enrichment
	7. Non-toxic contamination - changes in turbidity/
	Changes in suspended solids (water clarity)
	8. Introduction of non-native species and
	translocation/ introduction or spread of non-
	indigenous species
	9. Selective extraction of species/ Removal of non-
	target species
	10. Interim CA only: Litter
	11. Interim CA only: Physical change (to another
	seabed type)
3. Is the feature(s)/sub-features(s)	Pressure Screening - Justification

¹² Managing Natura 2000 sites: <u>http://ec.europa.eu/environment/nature/natura2000/management/guidance_en.htm</u>

		HRA Template v1.1
likely to be exposed to the pressure(s) identified?	3. 4.	 IN – This gear is known to cause the resuspension of finer sediments through disturbance to the seabed. The chances of siltation in areas of fine sediment are therefore high. Trawling is generally avoided in areas of subtidal mud as finer sediments are known to clog up the gear. Furthermore, mud communities generally experience natural siltation so have low sensitivity. Changes of siltation in areas of coarser sediment are highly unlikely to occur, however communities which inhabit areas of sand and gravel are sensitive to excessive inputs of fine material. Enhanced siltation rates and subsequent smothering may arise as an indirect effect of this activity occurring in adjacent sediment types (i.e. subtidal mud/subtidal muddy sand). Further investigation is needed on the magnitude of the pressure, including the effect of the gear and the spatial scale/intensity of the activity on different sediment types. IN – This gear type is known to cause abrasion and disturbance to the seabed surface. Intensive and persistent damage can be detrimental to the favourable condition of an interests feature structure and function. Further investigation is needed on the
4. What key attributes of the site are likely to be affected by the identified pressure(s)?	- Rang sedi bioto subt coar abur	 magnitude of the pressure, including the effect of the gear and the spatial scale/intensity of the activity. IN – Extraction of species can be limited by minimum landing sizes depending on the species. Sandeels are targeted and removed and therefore is unlikely to have a significant impact on the biotope or communities associated with this feature type. Impacts on the associated community may however occur through the removal of larger epifaunal and potentially infaunal species, whilst smaller organisms are likely to pass through the gear. It is however likely to disturb smaller species through physical abrasion of the gear. Further investigation is needed as to the magnitude of removal and disturbance to associated communities/species. 33/Interim CA: ge and distribution of characteristic subtidal ment biotopes, for example: IMU opes/Presence and spatial distribution of idal mixed sediment/ subtidal sand/subtidal rese sediment communities/Presence and ndance of typical species/Species composition of presence and potential species composition of presence and potential species composition of the species composition of the species composition of the species and potential species for example: IMU press/Presence and spatial distribution of the species composition of the spec

5. Potential scale of pressures and mechanisms of effect/impact (if known)	Refer to full LSEs.	
6. Is the potential scale or magnitude of any effect likely to		OR In-combination ¹³
be significant?	Yes	N/A
6. Have NE been consulted on this LSE test? If yes, what was NE's advice?	Please refer to letters from Natural England dated 12/01/2016 & 01/03/16.	

5.2 Table 3: Summary of LSE Assessment(s) – Intertidal sub-features

1. Is the activity/activities directly connected with or necessary to the management of the site for nature conservation?	No
2. What potential pressures,	Regulation 33 CA/Interim CA:
exerted by the gear type(s), are	1. Physical loss - removal
likely to affect the feature(s)/sub-	2. Physical loss - smothering
feature(s)?	3. Physical damage – siltation/ Siltation rate changes
	(high), including smothering
	4. Physical damage – abrasion/ Abrasion/disturbance
	of the substrate on the surface of the seabed/
	Penetration and/or disturbance of the substrate
	below the surface of the seabed, including abrasion
	 Toxic contamination - introduction of synthetic/non- synthetic compounds
	 Non-toxic contamination - changes in nutrient loading/organic loading
	7. Non-toxic contamination - changes in turbidity
	Introduction of non-native species and
	translocation/ introduction or spread of non-
	indigenous species
	9. Selective extraction of species
	10. Interim CA only: Litter
	11. Interim CA only: Physical change (to another
	seabed type)
3. Is the feature(s)/sub-features(s)	Pressure Screening - Justification

¹³ If conclusion of LSE alone an in-combination assessment is not required.

	-	HRA Template v1.1
likely to be exposed to the pressure(s) identified?	3.	Intertidal Mixed Sediments Only - IN – This gear is known to cause the resuspension of finer sediments through disturbance to the seabed. The chances of siltation in areas of fine sediment are therefore high. The intertidal mixed sediment sub-features are considered to have higher exposure to smothering than intertidal sandflat communities in the light of birth interacity are off developments.
		high intensity one-off developments. Further investigation is needed on the magnitude of the pressure, including the effect of the gear and the spatial scale/intensity of the activity on different sediment types.
	4.	IN – This gear type is known to cause abrasion and disturbance to the seabed surface. Intertidal mudflats are naturally dynamic and many of the organisms inhabiting them have adaptations to morphological change. Intensive and persistent damage can be detrimental to the favourable condition of an interests feature structure and function. Further investigation is needed on the magnitude of the pressure, including the effect of the gear and the spatial scale/intensity of the activity.
	9.	IN – Extraction of species can be limited by minimum landing sizes depending on the species. Sandeels are targeted and removed and therefore is unlikely to have a significant impact on the biotope or communities associated with this feature type. Impacts on the associated community may however occur through the removal of larger epifaunal and potentially infaunal species, whilst smaller organisms are likely to pass through the gear. It is however likely to disturb smaller species through physical abrasion of the gear. Further investigation is needed as to the magnitude of removal and disturbance to associated communities/species.
4. What key attributes of the site are likely to be affected by the identified pressure(s)?	- Topo - Sed distr - Ran and LML distr sand sedi typic	33/Interim CA: ography iment character/Sediment composition and ibution ge and distribution of characteristic mud/ sand gravel/ mixed sediment biotopes, for example: J/ LMS/ LMX biotopes/Presence and spatial ibution of intertidal mud communities/intertidal d and muddy sand communities/intertidal mixed ment communities/Presence and abundance of cal species/Species composition of component imunities

5. Potential scale of pressures and mechanisms of effect/impact (if known)	Refer to full LSEs.	
6. Is the potential scale or magnitude of any effect likely to		OR In-combination ¹⁴
be significant?	Yes	N/A
6. Have NE been consulted on this LSE test? If yes, what was NE's advice?		9

¹⁴ If conclusion of LSE alone an in-combination assessment is not required.

6. Appropriate Assessment

6.1 Co-location of Fishing Activity and Site Features/Sub-feature(s)

Maps of trawl sightings and site feature/sub-features can be found in Annex 5. These maps reveal where fishing activity occurs in relation to the designated features sub-features of the site. The majority of trawl sightings, within the centre of the harbour, occur in areas of subtidal mixed sediment and subtidal sand. Where trawling occurs on the fringes of the intertidal, these are areas of intertidal sand and muddy sand. The limited number of sightings outside of this central area, in Mallard Sands and the north eastern quarter, are areas of intertidal mud and intertidal sand and muddy sand.

6.2 Potential Impacts

Bottom trawling is known to have a number of direct and indirect effects on the environment. Beam trawls, otter trawls and dredges are very similar in their effect, with heavier gear in contact with the seabed causing greater damage (Jones, 1992) and lighter towed gear (e.g. light demersal trawl) having less impact (Drabsch *et al*., 2001). The effects vary depending on the level of gear in contact with the seabed, depth, seabed type and strength of currents and tides (Jones, 1992). It is therefore worth noting that the trawling effects reported in the studies discussed below will largely depend on the size of the gear used. Where possible the gear used within each study has been stated where available. It should be noted there are likely to be large differences between the impacts of the gear used is extremely light in comparison. Unfortunately no studies were found on the impacts of trawling with gear similar to that used in sandeel trawling.

6.2.1 Physical disturbance

Physical disturbance is generally related to the direct effects of bottom towed fishing gear and include the scraping and ploughing of the substrate, scouring and flattening of the seabed, sediment resuspension and changes in the vertical redistribution of sediment layers (Roberts *et al.* 2010).

Otter trawl fishing gear has contact with the seabed through the ground rope, chains and bobbins, sweeps, doors and any chaffing mats or parts of the net bag (Jones, 1992). Otter boards, or doors, leave distinct tracks on the seafloor ploughing distinct groove or furrows, which can be 0.2-2 metres wide and up to 30 centimetres deep (Jones, 1992; Thrush & Dayton, 2002). The depth of furrows depends on the weight of the board, the angle of attack, towing speed, and the nature of the substrate, being greatest in soft mud (Jones, 1992; Løkkeborg, 2005). The passage of the doors also creates sediment mounds known as berms (Gilkinson *et al.* 1998; Johnson *et al.* 2002). Marks on the seabed caused by other parts of the gear are faint when compared with those caused by trawl doors (Løkkeborg *et al.* 2005). Ground ropes and weights can scour and flatten the seabed, skimming the surface sediment between the grooves left by the trawl doors (Jones, 1992; Roberts *et al.* 2010; Grieve *et al.*, 2014). Spherical footrope bobbins can cause compressed tracks on surficial sediments Brylinsky *et al.* 1994). In areas of surface roughness i.e. sand waves and ripples, features can be flattened and the habitat smoothed (Kaiser & Spencer, 1996; Tuck *et al.*, 1998; Schwinghamer *et al.*, 1996; 1998). It has been reported that the bridles do not appear to result in any marks on the seabed (Brylinsky *et al.* 1994).

Experimental flounder trawling, using an 18 m trawl with 200 kg doors and footrope with 29 cm rubber rollers, in the Bay of Fundy revealed that trawl doors made furrows that were 30 – 85 cm wide and up to 5 cm deep in an intertidal area characterised by silty sediments (Brylinsky *et al.*

1994). The same study reported an area of approximately 12% between the outer edges of the doors was visually disturbed (Brylinsky *et al.* 1994). A side-scan survey, used to assess the effects of otter trawl over sand and mud sediments in lower Narragansett Bay, revealed 5 to 10 cm deep tracks from otter trawl doors and 10 to 20 cm high berms in mud bottom channels (DeAlteris *et al.*, 1999). No information on the type of gear used was provided in the study. Sediment profile images (SPIs) were used to estimate the physical impacts of experimental trawling using a shrimp otter trawl with a head rope length of 10 m, otter boards measuring 90 x 140 cm and weighing 125 kg each and ground rope of 14 m with 20 kg of lead weight distributed across its length in an area of muddy sediments in the Gullmarfjord (Nilsson & Rosenberg, 2003). Forty three percent of the images in trawl area had signs of physical disturbance (Nilsson & Rosenberg, 2003). A crude estimate of the scale of disturbance was made from the images, with an estimated depth of the trawl tracks at approximately 10 cm, and width between 30 and 60 cm (Nilsson & Rosenberg, 2003). It was calculated that one-tenth of the area affected by trawling would be directly affected by ploughing from the otter boards themselves (Nilsson & Rosenberg, 2003).

Sediment character

Towed demersal fishing gear has been shown to alter sedimentary characteristics and structure, particularly in subtidal muddy sand and mud habitats, as a result of penetration into the sediment (Jones, 1992; Gubbay & Knapman, 1999; Ball *et al.* 2000; Roberts *et al.* 2010). Surface organic material can be mixed into subsurface layers, changing the vertical distribution of sediment layers (Mayer *et al.*, 1991; Jones, 1992). Sediment structure may change through the resuspension of sediment, nutrients and contaminants and relocation of stones and boulders (ICES, 1992; Gubbay & Knapman, 1999). Trawling can increase the fraction of fine sediment on superficial layers of the seabed (Queirós *et al.* 2006). As fine material is suspended, it can be washed away from the surface layers (Gubbay & Knapman, 1999). Trimmer *et al.* (2005) reported significant correlations between fishing intensity and sediment silt content (Queirós *et al.* 2006). It is thought that continual sediment resuspension, as a result of trawling, can lead to the accumulation of fine sediments in the superficial layers of sediment in areas that are trawled if there is an absence of significant advective transport (Jennings & Kaiser, 1998; Trimmer *et al.* 2005).

In Estero Bay of the Californian coast, grain size analyses were used to detect any changes in sediment grain size as a result of experimental trawling using a small footrope otter trawl (61 ft head rope, 60 ft ground rope, 8 inch and 4 inch discs, 3.5 ft x 4.5 ft 700 lbs ft trawl doors) (Lindholm et al., 2013). The study plots were located at a depth of 160-170 m and sediment analyses revealed the nature of the sediment to be coarse silt/fine sand (Lindholm et al. 2013). Post-trawl samples displayed the same grain size distribution as pre-trawl samples, albeit with a slight increase in silt content and 2% decrease in the fine sand fraction (Lindholm et al. 2013). Despite these differences, average mean grain size per plot indicated no visible differences between pre- and post- trawl samples and no quantifiable significant sedimentary differences were observed between trawled and control pots or between sample periods (Lindholm et al. 2013). These results are supported by a number of other studies including Tuck et al. (1998) and Schwinghamer et al. (1998), both of which reported no significant differences in sediment grain size in relation to trawling disturbance. Tuck et al. (1998) investigated the physical effects of trawling disturbance on a sheltered sealoch in Scotland at 35-40 m depth in an area characterised by 95% silt and clay using modified rockhopper ground gear without a net. Unfortunately further details on the gear are not available. Schwinghamer et al. (1998) examined physical impacts of experimental otter trawling in the Grand Banks in an area of sandy habitat at 120-146 m depth using an Engel 145 otter trawl with 1250 kg oval otter boards and 46 cm rock hopper gear. Despite reporting no change in sediment grain size, acoustic data did reveal that trawling changed smallscale biogenic sediment structures (such as tubes and burrows) down to 4.5 cm (Schwinghamer et al. 1998), indicating a reduction in habitat complexity (Løkkeborg, 2005).

Resuspension of sediment (general)

The resuspension of sediments is generated by turbulence from trawl doors (Main & Sangster, 1979; 1981). The sediment cloud which is created contributes to the capture of fish (Main & Sangster, 1979; 1981). The increase in suspended sediment load reduces light levels and can smother benthos when the sediment settles out (Jones, 1992). The effects of sediment resuspension are site specific and depend on grain size, sediment type, water depth, hydrological conditions, sensitivity of fauna, currents, tides and water mass properties (Coen, 1995).

Resultant sediment plumes from shellfish dredging can lead to areas of elevated turbidity up to 30 metres beyond the dredge zone (Manning, 1957; Haven, 1979; Manzi *et al.*, 1985; Maier *et al.*, 1998), potentially transporting and redistributing sediment into adjacent areas (Vining, 1978). In most cases however, the amount of suspended sediment rapidly returns to low levels with distance from the dredge activity (Kyte *et al.*, 1976; Maier *et al.*, 1998) with 98% resettling within 15 m (Mercaldo-Allen & Goldberg, 2011). Effects of sediment plumes and enhanced turbidity levels appear to be temporary, with the majority of sediment plumes disappearing within hours of dredging (Maier *et al.*, 1998). Dispersed sediments may take 30 minutes to 24 hours to resettle (Lambert & Goudreau 1996; Northeast Region EFHSC, 2002). Shallow water environments with high silt and clay content are likely to experience larger plumes and greater turbidity (Ruffin 1995; Tarnowski 2006).

In areas of tide and current, the effects of sediment resuspension are short in duration and the effects of redeposition are not permanently, particularly with respect to those adapted to storm events and sediment transport by currents (Jones, 1992).

6.2.2 Biological disturbance

Bottom towed fishing gear can in the mortality of non-target species through direct physical damage inflicted by the passage of the trawl or indirectly through damage, exposure and subsequent predation (Roberts *et al.* 2010). This can lead to long-term changes in the benthic community structure (Jones, 1992), including decreases in biomass, species richness, production, diversity, evenness (as a result of increased dominance) and alterations to species composition and community structure (Tuck *et al.*, 1998; Roberts *et al.* 2010). Disturbance from repeated trawling selects for more tolerant species, with communities becoming dominated by smaller-bodied infaunal species with fast life histories, juvenile stages, mobile species and rapid colonists (Engel & Kvitek, 1998; Gubbay & Knapman, 1999; Kaiser *et al.* 2000; Jennings *et al.* 2001; Kaiser *et al.* 2002). In addition, larger individuals may become depleted more than smaller individuals (Jennings *et al.* 2002).

The impacts of fishing activities on benthic communities varies with gear type, habitat and between taxa (Collie *et al.* 2000; Thrush & Dayton, 2002; Kaiser *et al.* 2006). Reported effects are habitat-specific (Roberts *et al.* 2010). A meta-analysis conducted by Kaiser *et al.* (2006) revealed that soft-sediment, especially muddy sands were vulnerable to fishing impacts, with otter trawling producing a significant immediate impact on this habitat. In mud communities, otter trawling was reported to have a significant negative short-term impact, but positive long-term effect with respect to the mean abundance of benthic taxa (Kaiser *et al.* 2006). A number of studies found no detectable impacts, specifically in relation to different forms of trawling in sand habitats (Van Dolah *et al.*, 1991; Kaiser & Spencer, 1996; Kenchington *et al.*, 2001; Roberts *et al.*, 2010), although this is not true in all cases. Such habitats are likely to be pre-adapted to higher levels of natural disturbance and are characterised by relatively resistant fauna (Kaiser *et al.* 2006).

The impact of otter trawls on benthic communities varies between studies, notably between sediment types. In a meta-analysis of experimental fishing impact studies, conducted by Kaiser *et*

al. (2006), otter trawling was found to have one the least negative impacts, compared to other gear and substrata combinations. The initial impact on benthic communities from otter trawl disturbance on mud was estimated to be -29%, -15% on sand and +3% on gravel (Kaiser *et al.*, 2006; Hinz *et al.*, 2009).

Direct mortality of different megafaunal taxa groups varied after a single sweep with a commercial otter trawl (dimensions unknown) over shallow (30-40 m) sandy areas and deeper (40-50 m) silty sand areas in the southern North Sea (Bergman & van Santbrink, 2000). In areas of silty sand, direct mortality ranged from 0-52% for bivalves, 7% for gastropods, 0-26% for echinoderms, and 3-23% for crustaceans. In areas of sand, direct mortality ranged from 0-21% for bivalves, 12-16% for echinoderms and 19-30% for crustaceans. Experimental otter trawling (dimensions unknown) on the continental shelf of northwest Australia, in an area presumed to be sand, led to an exponential decline in the mean density of macrobenthos with increasing tow numbers (Moran & Stephenson, 2000; Johnson et al. 2002). Density was reduced by approximately 50% after four tows and 15% after a single tow (Moran & Stephenson, 2000; Johnson et al. 2002). A trawl with 20 cm disks, separated by 30 to 60 cm spacers was used (Johnson et al. 2002). No further information on the trawl used is known. The impacts of otter trawling on benthic communities on a sandy bottom in Grand Banks, Newfoundland were studied over a three year period (Kenchington et al., 2001). Three experimental corridors with adjacent reference corridors were established and experimental corridors were trawled 12 times within 5 days for three years using an Engel 145 otter trawl with 1250 kg otter doors, 60 m door spread and 46 cm rockhopper foot gear. Changes in the benthic community were sampled using an epibenthic sledge. The sled is largely used to sample epifauna and some infauna as the sled penetrates to a depth of 2 to 3 cm. Samples collected using the benthic sled revealed a 24% reduction in average biomass in trawled corridors compared to reference corridors. This decrease was caused by reductions in biomass of sand dollars, brittle stars, soft corals, sea urchins and snow crabs. No significant effects were observed for mollusc species. The mean total abundance per grab sample was 25% lower immediately post trawling in one of the three years and declines were demonstrated for 13 taxa primarily made up of polychaetes, which also declined in biomass (Løkkeborg et al., 2005).

Experimental fishing manipulations investigating the impacts of otter trawling on muddy sediments report relatively modest changes in benthic communities in the short-term (Hinz et al., 2009). Tuck et al. (1998) investigated the biological effects of trawling disturbance on a sheltered sealoch in Scotland at 35-40 m depth in an area characterised by 95% silt and clay using modified rockhopper ground gear without a net. Unfortunately further details on the gear are not available. Trawling was conducted one day per month for 16 months and biological surveys were completed after 5, 10 and 16 months of disturbance and then for a further 6, 12 and 18 months after trawling disturbance in trawled and untrawled control areas (Tuck et al., 1998; Johnson et al. 2002). The response of different community parameters (i.e. species diversity, abundance) to trawling disturbance varied. Infaunal community structure became significantly altered after 5 months of fishing and remained so throughout the duration of the experimental. No significant differences in infaunal species richness however were detected during the first 10 months of trawling. After 16 months of trawling disturbance, and throughout the recovery period, species richness was significantly higher in the trawled site. Infaunal abundance was greater in the trawled site prior to fishing and after 12 months of recovery, although not after 18 months of recovery. The abundance of certain species (predominantly polychaetes), increased within the trawled site and others (i.e. bivalves) declined. Species diversity was lower in the fished site throughout the whole period, including prior to fishing commencing and no effects on total biomass were reported. Infaunal community structure became significantly altered after 5 months of fishing and remained so throughout the duration of the experimental. Experimental trawling, with a commercial otter trawl (dimensions unknown), over a muddy substrate at a depth of 30 to 40 m off the Catalan coast in Spain reported a similar percentage abundance of most major taxa between fished (polychaetes, 51.5%; crustaceans, 10.9%; molluscs, 34.7%; other taxa, 2.9%) and unfished (polychaetes, 48.9%; crustaceans, 11.3%; molluscs, 36.1%; other taxa, 3.7%) sites (Sanchez *et al.*, 2000). Analysis of species richness and diversity indicated that the infaunal community did not alter during the first 102 hours following a single sweep. The number of individuals and taxa were significantly greater after 150 hours in an area subject to a single sweep, although no effect was detected after 72 hours in an area subject to a double sweep. For some taxa, significant differences in abundance were between fished and unfished areas including Chaetopteridae, a family of polychaete worms, and *Amphiura chiajes* whose abundances were greater in fished areas after a single sweep and Cirratulidae, another family of polychaete worms, whose abundance between fished and unfished areas after a double sweep. Significant differences in abundance between fished areas after a double sweep. Significant differences in abundance between fished areas after a double sweep. Significant differences in abundance between fished areas were largely. The authors speculated a decrease in the abundance of certain species in the unfished area may indicate the effects of natural variability at the site exceed that of fishing disturbance.

The initial impacts of otter-trawl gear on muddy habitats are relatively modest, however cumulative long-term disturbance can lead to significant changes in benthic communities (Hinz et al., 2009). Hinz et al. (2009) investigated the biological consequences of long-term chronic disturbance caused by the otter trawl Nephrops norvegicus (Norway lobster) fishery along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. Trawling intensity and its spatial distribution was estimated using overflight data and log book records of hours spent fishing. The study reported reductions in infaunal abundance of 72% from the lowest trawling effort recorded (1.3 times trawled/year) to the highest (18.2 times trawled/year). Over the same range of trawl intensities, infaunal biomass was reduced by 77% and species richness decreased by 40%, whilst epifaunal abundance was reduced by 81% and epifaunal species richness was decrease by 18%. It is worth noting that community descriptors were log transformed and therefore the reported reductions in abundance, biomass and species richness are greatest at low trawling intensities and less severe at higher trawling intensities. Hiddink et al. (2006a) conducted an assessment of large-scale impacts of a bottom trawl fishery on benthic production, biomass and species richness in the North Sea, using a size-based approach for assessing trawling impacts on benthic communities. Model development allowed for the effects of habitat parameters on the dynamics of benthic communities and to predict the effects of trawling on species richness. Data used to validate the model was collected from 33 sampling stations in four areas of soft sediment in the North Sea subject to different levels of trawling intensity. The model predicted that benthic community biomass was reduced by 56% and production by 21%. Queirós et al. (2006), analysed the biomass, production and size structure of two communities from a muddy sand and a sandy habitat with respect to quantified gradients of trawling disturbance on real fishing grounds in the Dogger Bank (sandy) and Irish Sea (muddy sand). The Dogger Bank is mostly fished by beam trawlers targeting plaice and the Irish Sea is fished by otter trawls targeting Norway lobster. In the muddy sand habitat, chronic trawling was found to have a negative impact on biomass and production of benthic communities, whilst no impact was identified on benthic communities within the sandy habitat. The differences in result for each habitat type are caused by differences in size structure between the two communities that occur in response to an increase in trawling disturbance. Lindholm et al. (2013) reported similar results in an area of coarse silt/fine sand at 160-170 m depth with experimental trawling using a small footrope otter trawl (61 ft head rope, 60 ft ground rope, 8 inch and 4 inch discs, 3.5 ft x 4.5 700 lbs ft trawl doors) (Lindholm et al., 2013). The study reported no measurable effects of trawling on densities of invertebrates, including sessile and mobile epifauna and infauna. The study area was characterised by a high level of patchiness in both space and time with regards to invertebrate assemblage, particularly with respect to opportunistic species (polychaete worms and brittestars). Densities of sessile and mobile invertebrates were low in the study and varied considerably between plots and study periods, suggesting that the effects on trawling should be considered with background environmental variation in mind.

Many studies have observed a shift in benthic community structure from one dominated by relatively high biomass species to one dominated by a high abundance of small-sized organisms (Collie et al., 2000). The predicted change in shallow water communities, as a result of trawling disturbance, is an increase in r-strategists (i.e. polychaetes) and decrease K-strategist (i.e. molluscs and crustaceans) (Jones, 1992). A shift towards small-sized species has the potential to alter benthic productivity as body mass is negatively correlated with individual production to biomass ratio (Jennings et al., 2001; Queirós et al., 2006). Overall reductions in benthic productivity have been reported in areas where intense bottom trawling takes place (Jennings et al., 2001). Increases in the biomass or production of smaller infauna have been found to be small in relation to losses in overall community biomass and production that occurred as a result of the depletion of larger individuals (Jennings et al., 2001). Smaller bodied fauna are incapable of utilising resources that become available as larger fauna are removed from the community (Queirós et al., 2006). Under such conditions, resources may be redirected to other parts of the system (Queirós et al., 2006). In areas of natural disturbance, the dominance of smaller bodied fauna may be a general adaptation to such a dynamic environment and therefore the community may seem relatively unaffected by trawling (Queirós et al., 2006).

Populations of larger, longer-lived species are less resilient to fishing impacts than smaller, shortlived species as they are able to compensate for any increases in mortality (Roberts *et al.*, 2010). In addition, lighter animals are often pushed aside by the pressure wave in front of the net (Gilkinson *et al.*, 1998). Larger fauna are mainly affected through direct physical contact with the gear and may be removed from the community (Bergman & van Santbrink, 2000; Queirós *et al.*, 2006). Bergman and van Santbrink (2000) revealed a size-dependent trend for some species with respect to direct mortality from a 12 and 4 m beam trawl. In areas of silty sediments, individuals of the bivalve species *Chamelea gallina* above 2 cm were more vulnerable with mortalities ranging between 22-26%, compared to smaller specimens (4-7% mortality). The impact caused by contact with the fishing gear is not comparable to natural disturbance, and mortalities in more mobile and dynamic sediments will not necessarily be lower than in stable sediments (Bergman & van Santbrink, 2000). The impacts on densities of small individuals may however be greater if the larger animals in question live deeper in the sediment, in addition to their potentially more efficient escape possibilities (Bergman & Hup, 1992; Gubbay & Knapman, 1999).

Studies have shown that trawling impacts on meiofuna (animals that pass through a 500 µm mesh sieve but are retained in a 63 µm mesh sieve) are relatively limited (Brylinsky *et al.*, 1994; Scratzberger *et al.*, 2002). Brylinsky *et al.* (1994) reported reductions in the abundance of nematodes after experimental flounder trawling on the intertidal in the Bay of Fundy, although the rate of recovery was rapid following trawling disturbance. Scratzberger *et al.* (2002) reported no short- to medium- term (1-392 days after experimental trawling) impacts on diversity or biomass of meiofauna from experimental fishing with a 4 m beam trawl in muddy sand in the southern North Sea. Mild effects on community structure were reported at one location however these impacts were minor in relation to seasonal change. The authors suggested that meiofauna are more resistant to beam trawling than macrofauna and they have the potential to withstand the effects of chronic trawling. Their resistance to trawling is thought to be related to their small body size as they are resuspended rather than killed, combined with their short generation cycles which allow populations to withstand elevated mortality.

Faunal groups and species responses

The relative impact of bottom towed fishing gear on benthic organisms is species-specific and largely related to their biological characteristics and physical habitat. The vulnerability of an organism is ultimately related to whether or not it is infaunal or epifaunal, mobile or sessile and soft-bodied or hard-shelled (Mercaldo-Allen & Goldberg, 2011). Fragile fauna (i.e. bivalves and

sea cucumbers) have been shown to be particularly vulnerable to trawling damage and disturbance and sedentary and slowing moving species can be significantly lower (Kaiser & Spencer, 1996; Gubbay & Knapman, 1999). Motile groups and infaunal bivalves have shown mixed responses to trawling disturbance, with life history considerations such as habitats requirements and feeding modes likely to play a key role in determining a species response (McConnaughey *et al.*, 2000; Johnson *et al.*, 2002). In a meta-analysis of experimental fishing impact studies, conducted by Kaiser *et al.* (2006), otter trawling was found to have the greatest impact on suspension feeders in mud habitats, perhaps reflecting the depth of penetration from the otter doors,. The most negative effect on deposit feeders was found in gravel habitats and the most negative effect on suspension feeders was found in sand habitats (Kaiser *et al.*, 2006). Suspension feeding bivalves, such as Corbula gibba, are largely unable to escape burial of more than 5 cm (Maurer *et al.*, 1981) and are also sensitive to high sedimentation rates that may occur following intensive trawling (Howell & Shelton, 1970; Tuck *et al.*, 1998). Having said this, larger-sized individuals have been shown to be more resistant to trawling disturbance as they are relatively robust (Bergman & van Santbrink, 2000).

Studies have revealed mixed effects on epifauna (organisms that inhabit the seabed surface). Jennings et al., (2001) found that chronic trawling disturbance had no significant effect on epifauna in the North Sea. Similarly, no long term effects on the number of epifaunal species or individuals were detected by Tuck et al. (1998), although a number of species-specific changes in density did occur (increase in Ophiura sp. and decreases in Hippoglossoides platessoides, Metridium senile and Buccinum undatum). The lack of long term effects detected by Tuck et al. (1998) is likely to be compounded by the fact that beam trawl gear used was not equipped with a net, as greater effects on epifauna may be expected. The removal of 7 tonnes of epifaunal was reported by Pitcher et al. (2000) during experimental trawling, however no significant changes in the density of epifauna were reported (Thrush & Dayton, 2002). Kenchington et al. (2001) investigated the impacts of otter trawling on benthic communities on a sandy bottom in Grand Banks, Newfoundland over a three year period. Changes in the benthic community were sampled using an epibenthic sledge. The sled is largely used to sample epifauna and some infauna as the sled penetrates to a depth of 2 to 3 cm. Samples collected using the benthic sled revealed a 24% reduction in average biomass in trawled corridors compared to reference corridors. Hinz et al. (2009) investigated the biological consequences of long-term chronic disturbance caused by the otter trawl Nephrops norvegicus (Norway lobster) fishery along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. The study reported reductions in epifaunal abundance of 81% from the lowest trawling effort recorded (1.3 times trawled/year) to the highest (18.2 times trawled/year). Over the same range of trawl intensities, epifaunal species richness decreased by 18%, while no effect was evident for epibenthic biomass.

Epifaunal biomass at high trawling intensity sites was reported to be dominated by *Asterias rubens*, a possible response to elevated food availability in the form of biota killed or damaged by trawling (Hinz *et al.*, 2009). Starfish species can respond rapidly to prey availability (Freeman *et al.*, 2001) and are known to be resilient from the damaging impacts of trawls (Hinz *et al.*, 2009). Similarly, despite lower diversity, a greater dominance of the sea star, *Asterias amurensis*, was reported in heavily fished areas of the eastern Bering Sea (McConnaughey *et al.*, 2000). The overall mean abundance of *A. amurensis* was 58.5 kg/ha in the heavily fished, compared with 53.1 kg/ha in the unfished area. In contrast, Bergman and Hup (1992) reported a 43% reduction in the mean density of *A. rubens* after a single beam trawling. Generally speaking, a number of studies have shown to have adverse impacts on echinoderms, including a 0-26% mortality in silty sand and 12-16% mortality in sand as a result of otter trawling in the North Sea (Bergman & van Santbrink, 2000) and a 24% reduction in total biomass of mega-epibenthic species as a result of otter trawling on a sandy bottom in Grand Banks, owing primarily to reductions in sand dollars, brittle stars, soft corals, sea urchins and snow crabs (Kenchington *et al.*, 2001). Trawling caused significant damage only to echinoderms, with the highest probability of damage occurring on the

sea urchin (10 percent damage) (Kenchington *et al.*, 2001). Large and fragile echinoderms particularly susceptible to trawling, include the sea urchins *Brissopsis lyrifera* and *Echinocardium cordatum* (Ball *et al.*, 2000), the latter of which has been reported to have a mortality of 10-40% after the single passage of a 4 m and 12 m beam trawl (higher in silty areas than in sandy areas) (Bergman & van Santbrink, 2000). Jennings *et al.* (2001) reported highly significant reductions in the biomass of burrowing sea urchins in response to a chronic beam trawling in the North Sea.

A meta-analysis by Kaiser et al. (2006) showed beam trawling in sand to have a greater individual impact on crustaceans, echinoderms and molluscs when compared with annelids, whilst otter trawling in muddy sand appeared to have a greater impact on crustaceans than annelids and molluscs. The single passage of a 4m and 12 m beam trawl in sand and silty sand led to direct mortalities of up to 22% in small-sized bivalves and crustaceans and in megafaunal species up to 68% for bivalves and 49% for crustaceans (Bergman & van Santbrink, 2000). Bivalves such as Mya truncata, Lutraria lutraria and Nucula nitidosa showed greater densities in samples taken after trawling compared to those taken prior to trawling. By contrast, Tuck et al. (1998) reported a decline in Nucula nitidosa and Corbula gibba in abundance in the trawled area relative to reference area, with the former species being identified as sensitive. Other mollusc species reported to be sensitive to trawling disturbance includes the tellin shells, Tellina fabula (Bergman & Hup, 1992). Jennings et al. (2001) reported highly significant reductions in the biomass of bivalves in response to a chronic beam trawling in the North Sea. The physical interaction with trawl doors with the sea bed was simulated in a test tank in order to examine physical disturbance and biological damage (Gilkinson et al., 1998). During the simulation, bivalves which were buried in the scour path were displaced to the berm and 58-70% of displaced individuals were completely or partially exposed on the surface. Despite this, of the 42 specimens in the scour path, only two showed major damage, despite being displaced. A number of studies have reported limited impacts of molluscs in general as a result of trawling disturbance (Bergman & Hup, 1992; Prena et al., 1999).

Experimental fishing manipulations have shown that the impacts of trawling disturbance on annelids are limited, and in some instances may be positive, particularly with respect to polychaetes. Experimental flounder trawling on an intertidal silty habitat in the Bay of Fundy revealed no impact on either the composition or abundance of polychaetes, the majority of which are tube dwelling (Brylinsky et al., 1994). Whilst the single passage of a 4 m and 12 m beam trawl on sandy and silty sediment led to direct mortalities of 31% for annelids, principally the tubedwelling polychaete Pectinaria koreni, the mortality of many other small annelids observed was negligible (Bergman & van Santbrink, 2000). Ball et al. (2000) reported a decrease in abundance in most species following experimental trawling with a Nephrops otter trawl, except for most polychaete species which increased in abundance following trawling. These species included small opportunistic species such as such as Chaetozone setosa (52%), Prionospio fallax (149%) and Scolelepis tridentate (457%) or large scavenges such as Nephtys incisa (16%). Tuck et al. (1998) reported a consistently higher proportion of polychaetes in the treatment areas, with an increase in the abundance of opportunistic polychaete species belonging to the cirratulid famly, Cheatozone setosa and Caullenella zeflandica, in response to trawling disturbance. The polychaete, Pseudopolydora paucibranchiata, also increased in density, immediately following trawling disturbance (Tuck et al., 1998). Other polychaete species however did decline in response to fishing disturbance, including Scolopolos armiger, Nephtys cirrosa and Terebellides stroemi (Tuck et al., 1998). Scolopolos armiger is thought to be sensitive to burial, whilst N. cirrosa and T. stroemi are larger bodied and therefore more likely to be adversely affected by trawling disturbance (Tuck et al., 1998). Bergman and Hup (1992) found that three-fold trawling had minimal effect on the densities of worm species, except for Magelona, Lanice and Spiophanes, although densities of the former species significantly increased after experimental trawling for larger individuals. Jennings et al. (2001; 2002) reported no significant changes in polychaetes in response to a chronic beam trawling in the North Sea. In contrast to the aforementioned studies,

Kaiser *et al.*, (1998) studied the effect of beam trawling of megafauna in an area of stable sediments in the north eastern and found a reduction the abundance in the polychaetes *Aphtodita aculeata* and *Nephtys* spp., although these differences were no longer apparent 6 months after trawling.

A number of studies have identified common trends for certain species in response to trawling disturbance. The gastropod Buccinum undatum is shown to decline in areas of trawling disturbance (Tuck et al., 1998; Kaiser et al., 2000), with one study stating the effects of trawling persisted for 6 months into the recovery period (Tuck et al., 1998). Similarly, Echinocarodium cordatum has been identified as a fragile and highly vulnerable to trawling disturbance (Bergman & Hup, 1992; Bergman & van Santbrink, 2000), showing declines of 40 to 60% in density in one study (Bergman & Hup, 1992). Similar reductions were shown by the polychaete Lanice conchilega (Bergman & Hup, 1992), a species of polychaete which is highly incapable of movement in response to disturbance and therefore take a significant period of time to recolonise disturbed habitats (Goss-Custard, 1977). Other species that have been reported to exhibit adverse effects of trawling include the polychaete species Nephtys (Kaiser et al., 1998; Tuck et al., 1998) and Magelona (Bergman & Hup, 1992; Kaiser et al., 2000) and the emergent soft coral Alcyonium digitatum (Kaiser et al., 1998; 2000; Depestele et al., 2012). By contrast, the brittle star, Ophiura sp., has been reported to increase or remain constant in response to trawling disturbance (Tuck et al., 1998; Gubbay & Knapman, 1999; Kaiser et al., 2000; Callaway et al., 2007).

Sampling constraints

Experimental trawling studies provide a valuable tool for investigating the mechanisms by which bottom-trawl disturbance physically and biologically impacts on benthic habitats (Hinz et al., 2009). These experimental fishing manipulations are however often small-scale at spatial scales of km² to ha (Hinz et al., 2009). Some contain the caveat that the study area chosen may have been markedly affected by previous fishing activities (Tuck et al., 1998). If there are substantial changes in the benthic community in the initial period of trawling development, it may be difficult to detect subsequent trends or impacts from fishing because the community is resistant to such effects or because effects are relatively insignificant compared to those caused previously (Tuck et al., 1998). The benefits of using pristine, unfished sites which are then subject to experimental trawling gives a good idea of the benthic communities response and allows recovery to be quantified following fishing disturbance (Hinz et al., 2009). These findings provide helpful indications of instantaneous effects and relative severity of impacts for different gear types (Collie et al., 2000; Kaiser et al., 2006). Comparisons of high, low or no fishing intensity involves the classification of such areas in these fishing intensity levels (Hinz et al., 2009). These are often relative measures that are specific to each study, limiting generality and comparability (Hinz et al., 2009). Study sites chosen as unfished sites are often inaccessible to fisheries due to an obstruction and these can generate confounding effects (Hinz et al., 2009). Likewise, areas used as control sites may be subject to different environmental conditions, leading to further confounding effects (Hinz et al., 2009).

Experimental studies do however have a number of significant limitations (Hinz *et al.*, 2009). Quantifying the effects of fishing impacts under realistic fishing conditions is difficult and the spatial and temporal scale of disturbance generated by a trawling fleet is unfeasible in an experimental context (Hinz *et al.*, 2009). The occurrence of chronic fishing disturbance over large spatial scales can be expected to lead to greater effects and slower recovery rates than those reported in experimental studies (Hinz *et al.*, 2009).

Measures used to detect changes in the benthic community (i.e. abundance, biomass) can be subject to considerable temporal variability and make it difficult to detect any changes caused by trawling disturbance (Løkkeborg, 2005). A number of studies have shown that control areas

experience considerable change throughout the duration of a study and such temporal changes occur irrespective of trawling disturbance (Kenchington *et al.*, 2001; Løkkeborg, 2005). It can be difficult to attribute long-term changes to benthos to trawling alone, since other forces are likely to be acting on the community, including natural fluctuations, chemical dumping and eutrophication (Pearson & Barnett 1987; Rees & Eleftheriou 1989; Jones 1992). Sanchez *et al.* (2000) concluded the decrease in certain species in unfished areas was likely to indicate natural variability at the site exceeds the effects of fishing disturbance. Similarly, Kaiser *et al.* (1998) concluded that only subtle changes in community structure were caused by trawling and effects caused by seasonal fluctuations and natural disturbance were more pronounced (Løkkeborg, 2005).

6.2.3 Chemical disturbance

The vast majority of experimental studies investigate the physical and biological impacts of demersal trawling (Johnson *et al.* 2002). Information on the chemical effects of trawling is therefore very limited (Johnson *et al.* 2002). The chemistry of bottom sediments may be altered when the benthos are disturbed (Mercaldo-Allen & Goldberg, 2011).

Mayer *et al.* (1991) reported the mixing of surface organic material into subsurface layers. This led to the removal of organic matter from the surface metazoan-microbial aerobic chain to an anaerobic system (Jones, 1992). If subsurface layers of sediment are anoxic then further issues may occur and disturbing soft bottom may create anaerobic turbid conditions (Jones, 1992).

Riemann and Hoffman (1991) assessed the effects of otter trawling on the water column in a shallow (7.5-11 m) eutrophic sound (Limfjord) in Denmark using a small (6 m wide) commercial otter trawl. No information on sediment type was provided. Levels of suspended particulate matter, oxygen and nutrient levels were measured at a dredged and control site, before and after trawling. Immediately after trawling, average suspended particulate matter increased significantly at both sites, but returned to pre-trawl levels 60 minutes after. No significant effects were detected on oxygen and most nutrients, except for ammonia which significantly increased after trawling at one site. There were however marked differences between the control and experimental site which complicated the interpretation of this result.

The removal or disruption to benthic organisms that are involved in biogeochemical processes within the sediment, may alter the biogeochemistry of the sediment (Mercaldo-Allen & Goldberg, 2011). For example, the removal of large benthic bioturbators may affect sediment nutrient and oxygen fluxes ad influence whether the seafloor acts as a source or sink for certain nutrients (Olsgard *et al.*, 2008).

6.2.4 Natural disturbance

Communities that exist in areas of high natural disturbance rates are likely to have characteristics that provide resilience to additional disturbance (Hiddink *et al.*, 2006a). Any vulnerable species would be unable to exist within conditions of frequent disturbance (Hiddink *et al.*, 2006a). The impact of trawling is therefore expected to be higher in areas that experience low levels of natural disturbance and lower at locations of high levels of natural disturbance (Hiddink *et al.*, 2006a). Despite the significance between benthic community responses to trawling disturbance and levels of natural disturbance, the relationship remains unquantified (Hiddink *et al.*, 2006a). There can often be a failure to detect the effect of experimental fishing disturbance in areas exposed to high levels of natural disturbance (Thrush & Dayton, 2002). Whilst it may be appropriate to equate effects of natural disturbance to some effects of trawling disturbance, it is not always the case. Fishing can involve a higher intensity of disturbance, although this is dependent on frequency and extent (Thrush & Dayton, 2002). A trawl affects small-sized organisms through sediment perturbations, which is comparable to that of natural disturbance, whereas its impacts on larger-

bodied organisms will be through physical contact with fishing gear (Bergman & van Santbrink, 2000). The relatively low impact on benthic communities inhabiting mobile sediments might therefore only apply to small-bodied animals (Bergman & van Santbrink, 2000).

The entrance to Langstone Harbour has very strong tidal streams and on a mean spring tide can reach up to 6.4 knots (Hampshire County Council, 2010; <u>www.visitmyharbour.com</u>). In addition, there is anecdotal evidence of regular poor visibility within the centre of the harbour, south of Sword Sands, as a result of strong water currents. This indicates, in addition to strong tidal streams known to occur at the entrance that this area, which is subject to sandeel trawling, is highly dynamic and likely to be subject to relatively high levels of natural disturbance.

In the context of MPA management, it is important to qualify which changes occur to naturally dynamic communities as a result of natural variability within the environment, as opposed to that resulting from anthropogenic pressures (Goodchild *et al.*, 2015). The reason being that the conservation objectives of a site are 'subject to natural change (Goodchild *et al.*, 2015). It can therefore prove difficult in ascertaining if the conservation objective of a site is being compromised by anthropogenic pressures if the MPA feature is also subject to natural variability (Goodchild *et al.*, 2015). Potential changes caused by towed fishing gear could be masked by the impacts of natural sediment movements which maintain the benthic community in a state of successional flux (Løkkeborg, 2005; Goodchild *et al.*, 2015). A recent study attempted to analyse existing data to study effects of towed fishing gears on mobile sediments against a background of natural variability, however, it concluded the results of the study were of little direct value in terms of MPA management (Goodchild *et al.*, 2015)

6.2.4 Sensitivity

Habitat type

In a meta-analysis of 39 studies, which were conducted on varying sediment types, the most negative impacts occurred in muddy sand and gravel habitats (Collie *et al.*, 2000). Surprisingly, the meta-analysis revealed the least impact was observed on mud habitats and not sand, which was not consistent for the results obtained for abundance and species richness (Collie *et al.*, 2000). It was however noted that this may have been explained by the fact most studies conducted on mud habitats were looking at the impacts of otter trawls and that if data were available for the effect of dredgers a more negative response for this habitat may have been observed (Collie *et al.*, 2000). In a separate meta-analysis of 101 different fishing impact manipulations, the initial and long term impacts of different fishing types were shown to be strongly habitat-specific (Kaiser *et al.*, 2006). Kaiser *et al.* (2006) reported that soft sediments, particularly muddy sands, were vulnerable to fishing impacts. Otter trawling had a significant initial effect on muddy sand and mud habitats, although long-term impacts, post trawling, on mud habitats were positive (Kaiser *et al.*, 2006). The initial impact on benthic communities from otter trawl disturbance on mud was estimated to be - 29%, -15% on sand and +3% on gravel (Kaiser *et al.*, 2006; Hinz *et al.*, 2009).

A number of studies have found limited detectable impacts of trawling in sand habitats (Van Dolah *et al.*, 1991; Kaiser & Spencer, 1996; Kenchington *et al.*, 2001; Roberts *et al.*, 2010). Queirós *et al.* (2006) investigated the impact of chronic trawling on two communities from a muddy sand and a sandy habitat in the Irish Sea and Dogger Bank respectively. Chronic trawling was found to have an adverse effect on the biomass and production of benthic communities, whilst no impact was identified on benthic communities within the sandy habitat. It is important to note the two areas are fished with different gear types; the Dogger Bank is mostly fished by beam trawlers targeting plaice and the Irish Sea is fished by otter trawls targeting Norway lobster. Another study by Lindholm *et al.* (2013) reported no measurable effects of otter trawling using a small footrope otter trawl on the density of benthic invertebrates in areas of coarse silt/fine sand.

Bolam *et al.* (2014) investigated the relative sensitivity of benthic macrofauna to trawling, both short- and long-term and used this information to describe the spatial variation in sensitivity of secondary production. In general, it was found that the more sensitive and productive regions (northern North Sea and western English Channel) are associated with poorly-sorted, gravelly or muddy sediments, whilst less sensitive and less productive regions (southern North Sea) are associated with well-sorted sandy sediments (Bolam *et al.*, 2014). Faunal assemblages, whose total production has a low overall sensitivity to trawling, occur in sandy sediment sediments containing low silt/clay and/or gravel fractions and such sensitivity inversely correlates with levels of natural disturbance. Thus, total production is more sensitive to trawling in deep regions with little or no natural sediment disturbance (Bolam *et al.*, 2014). This is largely driven by long-term sensitivity of taxa and less so by instantaneous sensitivity (Bolam *et al.*, 2014).

The reason for the sensitivity of different sediment types to the impacts of bottom towed fishing gear is related to the physical stability of the seabed (Collie *et al.*, 2000). Fauna living within unconsolidated sediments such as those in shallow and sandy environments, are more adapted to dynamic environments, periodic resuspension and smothering and therefore able to recover more quickly (Tuck *et al.*, 2000; Collie *et al.*, 2000). Experimental studies investigating disturbance in shallow sandy environments indicate changes in community response are generally short-term (Kaiser *et al.*, 1998) or non-existent (Queirós *et al.*, 2006; Lindholm *et al.*, 2013). Impacts of bottom towed gear are therefore greatest in areas with low levels of natural disturbance (Hiddink *et al.*, 2003).

Sensitivity analyses

A number of recent studies have endeavoured to map the sensitivity of habitats to different pressures (Tillin *et al.*, 2010) and fishing activities (Hall *et al.*, 2008).

Tillin *et al.* (2010) developed a pressure-feature sensitivity matrix, which in effect is a risk assessment of the compatibility of specific pressure levels and different features of marine protected areas. The approach used considered the resistance (tolerance) and resilience (recovery) of a feature in order to assess its sensitivity to relevant pressures (Tillin *et al.*, 2010). Where features have been identified as moderately or highly sensitive to benchmark pressure levels, management measures may be needed to support achievement of conservation objectives in situations where activities are likely to exert comparable levels of pressure (Tillin *et al.*, 2010). In the context of this assessment, the relevant pressures likely to be exerted are siltation rate changes, penetration and abrasion of the seabed and removal of non-target species. Sensitivity of subtidal sediment types to these pressures vary from not sensitive to high, generally with low confidence in these assessments (Table 4). Intertidal mixed sediment has relatively low sensitivity. Intertidal and subtidal muds appear to have relatively similar sensitivities, being particularly sensitive to the removal of species but not to changes in siltation rate.

Hall *et al.* 2008 aimed to assess the sensitivity of benthic habitats to fishing activities. A matrix approach was used, composed of fishing activities and marine habitat types and for each fishing activity sensitivity was scored for four levels of activity (Hall *et al.*, 2008). The matrix was completed using a mixture of scientific literature and expert judgement (Hall *et al.*, 2008). The type of fishing activity chosen was 'demersal trawls' as this encompassed the fishing activity under consideration. The majority of habitat types exhibit medium sensitivity for heavy and moderate levels of gear intensity and low sensitivity at light and single pass gear intensities (Table 5). Exceptions to this include stable subtidal habitat types (muddy sands, sandy muds and mixed sediments) which both exhibit high sensitivity to heavy gear intensity. Muds and sands with

gaper clams are particularly sensitive to all levels of gear intensity, whilst dynamic shallow water fine sands have the lowest sensitivity to varying levels of gear intensity out of all habitat types.

Table 4. Sensitivity of SAC features to pressures identified by Tillin *et al.* (2010). Confidence of sensitivity assessment is included in brackets.

	Pressure					
Feature	Siltation rate	Penetration	Shallow	Surface abrasion:	Removal of non-	
	changes (low) -	and/or	abrasion/penetration	damage to	target species	
	5 cm of final	disturbance of the	 damage to seabed 	seabed surface		
	material added	substrate below	surface and	features		
	to the seabed in	the surface of the	penetration <25mm			
	a single event	seabed –				
		structural damage				
		to seabed >25mm				
Intertidal	Low (Low)	Not sensitive	Not sensitive (Low)	Not sensitive	Not exposed	
coarse		(Low)		(Low)	(High)	
sediment						
Intertidal			Low (High)	Low (High)	Not sensitive -	
sand and					Medium (Low)	
muddy sand						
Intertidal	Not sensitive	Low (High)	Low (High)	Not sensitive	Medium	
mud	(High)			(High)	(Medium)	
Intertidal	Medium (Low)	Medium – High	Medium – High (Low)	Medium (Low)	Medium (Low)	
mixed		(Low)				
sediments						
Subtidal	Not Sensitive –	Low – Medium	Low – Medium (Low)	Not Sensitive -	Not Sensitive -	
coarse	Medium (Low)	(Low)		High (Low)	Medium (Low)	
sediment						
Subtidal sand	Medium (Low)	Low – Medium	Not Sensitive -	Not Sensitive -	Not Sensitive -	
		(Low to Medium)	Medium (Low)	Medium (Low)	Medium (High)	
Subtidal	Not Sensitive	High (Low)	High (Low)	Medium (Low)	Low (Medium)	
mixed	(Low)					
sediment						

Table 5. Sensitivity of SAC features to different intensities (high, medium, low, single pass) of oyster/mussel dredging as identified by Hall *et al.* (2008).

Habitat Type	Gear Intensity*				
	Heavy	Moderate	Light	Single pass	
Subtidal stable muddy sands, sandy muds and muds	High	Medium	Low	Low	
Stable subtidal fine sands	Medium	Medium	Low	Low	
Dynamic, shallow water fine sands	Medium	Low	Low	Low	
Stable spp. rich mixed sediments	High	Medium	Medium	Low	
Unstable coarse sediments – robust fauna	Medium	Medium	Low	Low	
Intertidal muds	Medium	Medium	Low	Low	
Intertidal Muddy Sands – excl. gaper clams	Medium	Medium	Low	Low	
Muds and sands – incl. gaper clams	High	High	Medium	Medium	

6.2.5 Recovery

Recovery ultimately depends on the level of impact which is related to the weight of gear on the seabed, towing speed, the nature of bottom sediments and strength of tides and currents (Jones, 1992).

Habitat type and biological recovery

The timescale for recovery largely depends on sediment type, associated fauna and rate of natural disturbance (Roberts *et al.*, 2010). Experimental studies have reported a variety of responses to trawling disturbance (Dernie *et al.*, 2003). Such variation arises from characteristics specific to the site, i.e. location, gear fishing, season and habitat (Dernie *et al.*, 2003). This hinders the formation of general conclusions and recovery rates of communities that would of use for ecosystem management (Dernie *et al.*, 2003).

Generally speaking, in locations where natural disturbance levels are high, the associated fauna are characterised by species adapted to withstand and recover from disturbance (Collie et al., 2000; Dernie et al., 2003; Roberts et al., 2010). More stable habitats, which are often distinguished by high diversity epifauna, are likely to take a greater time to recover (Roberts et al., 2010). In a recent meta-analysis on the biological impacts of different fishing activities, recovery of muddy sands was predicted to take months to years and sand was predicted to take days to months (Kaiser et al., 2006). Similarly, Dernie et al. (2003) reported clean sand communities to have the most rapid rate of recovery following disturbance, with muds having an 'intermediate' recovery rate and muddy sand habitats having the longest recovery rates. More specifically, Kaiser et al. (2006) reported recovery times in the abundance of biota of less than 50 days from beam trawling in highly energetic, shallow, soft-sediment habitats of sand and muddy sand. In more stable gravel sediments, biota were still reduced by 40% after 50 days (Kaiser et al., 2006). Collie et al. (2000) reported recovery times of 100 days in sandy sediment communities from trawling disturbance. Kaiser et al. (1998) investigated the impacts of beam trawling on megafaunal communities in two areas characterised by mobile megaripple structures and stable uniform sediments. Effects of trawling in mobile sediments were not detectable and in uniform sediments were no longer evident after 6 months (Kaiser et al., 1998). The impacts of otter trawling on benthic communities on a sandy bottom in Grand Banks, Newfoundland a 120-146 m depth was studied over a three year period (Kenchington et al., 2001). The sampling programme was not designed to determine the long-term effects and recovery, although available data indicated a recovery of the habitat and biological community within a year or less (Løkkeborg, 2005). Tuck et al. (1998) studied the biological effects of otter trawling in a sheltered sealoch in Scotland at 35-40 m depth in an area characterised by 95% silt and clay. A similar condition to the reference site was reached after 18 months, with the abundance of individuals shown to return to similar levels recorded prior to trawling (Tuck et al., 1998). Partial recovery of infaunal species occurred after 12 months and effects on epifauna were largely indistinguishable from the reference site 6 months after fishing ceased (Tuck et al., 1998; Johnson et al., 2002). Brylinsky et al. (1994) reported the a rapid recovery of nematode abundance within 4 to 6 weeks following experimental flounder trawling on intertidal silty sediments in the Bay of Fundy.

Foden *et al.* (2010) investigated recovery of different sediment types based on the spatial and temporal distribution of benthic fishing. Vessel monitoring system data (2006 to 2007) was used to estimate the distribution and intensity of scallop dredging, beam trawling and otter trawling in UK marine waters. This data was then linked to habitat in a geographic information system. Recovery periods for different habitats were estimated based on existing scientific literature for gear types and fishing intensity (Table 6), with recovery rates generally increasing with sediment hardness. It was estimated that based on mean annual trawl frequencies that 80% of bottom-fished areas were able to recover completely before repeat trawling. In 19% percentage bottom-fished areas however, the frequency of scallop dredging in sand and gravel and otter trawling in muddy sand and reef habitats occurred at frequencies that prevented full habitat recovery. At average fishing intensities (for each gear type), sand and mud habitats were able to recover fully, whilst gravel, muddy sand and reef habitats were fished at frequencies in excess of the estimated recovery period (shown in Figure 2 where the mean index of recovery exceeds 1).

Table 6. Recovery rates (days) of different habitats for different fishing gear types. ND: No Data. Source: Foden *et al.*, 2010.

	Habitat Type					
Gear Type	Sand	Gravel	Muddy sand	Reef	Mud	
Beam trawl	182 ^a	ND	236 ^b	ND	ND	
Otter trawl	0 ^b	365 ^d	213 ^c	2922 ^b	8 ^b	
Scallop	2922 ^{b,e}	2922 ^b	589 ^b	1175 ^b	ND	
dredge						
^a Kaiser <i>et al.</i> (1998); ^b Kaiser <i>et al.</i> (2006); ^c Ragnarsson & Lindegarth (2009); ^d Kenchington <i>et al.</i> (2006); ^e Gilkinson <i>et al.</i> (2005)						

Figure 2. Mean index of recovery (Ind_{Rec}) for gear-habitat combinations using fishing intensity data derived from Vessel Monitoring Systems in 2007. At Ind_{Rec} Rec = 1, the recovery period is equal to fishing frequency (horizontal dashed line), at Ind_{Rec} <1 fishing frequency is less than the predicted recovery period and at Ind_{Rec} fishing frequency exceeds the recovery period. BT: Beam Trawl, OT: Otter Trawl and ScD: Scallop Dredge. Source: Foden *et al.*, 2010.

Physical disturbance from chronic trawling occurs over large spatial scales and it may be expected that recovery rates will be slower than those assumed from experimental studies (Hinz *et al.*, 2009). Recovery at small experimental scales is likely to simply be immigration, which is a form of recovery that is unlikely in large and repeatedly trawled areas (Jennings *et al.*, 2001). The recovery of chronically disturbed benthic communities on fishing grounds will be largely dependent on recruitment and population growth, rather than on immigration from adjacent untrawled areas (Hiddink *et al.*, 2006b). The importance of larval recruitment for the recolonization of a disturbed area increases with the size of the disturbed area (Smith & Brumsickle, 1989; Foden *et al.*, 2010). The time of year when disturbance takes place may also influence the mode of recovery and recovery rate of the affected community (Foden *et al.*, 2010). The recruitment supply of larvae and adult infauna will vary at different times of year and in relation to the physical characteristics at a specific location (Foden *et al.*, 2010). The hydrodynamic regime will influence the rate of

recolonization by influencing the deposition of infaunal adults and larval stages (Foden *et al.*, 2010).

Population recovery rates are known to be species specific (Roberts *et al.*, 2010). Long-lived bivalves will undoubtedly take longer to recovery from disturbance than other species (Roberts *et al.*, 2010). Megafaunal species such as molluscs and shrimp over 10 mm in size, especially sessile species, are more vulnerable to impacts of fishing gear than macrofaunal species as a result of their slower growth and therefore are likely to have long recovery periods (Roberts *et al.*, 2010). Short-lived and small benthic organisms on the other hand have rapid generation times, high fecundities and therefore excellent recolonization capacities (Coen, 1995). For example, slow-growing large biomass biota such as sponges and soft corals are estimated to take up to 8 years, whilst biota with short life-spans such as polychaetes are estimated to take less than a year (Kaiser *et al.*, 2006).

Habitat type and physical recovery

The persistence of marks produced as a result of trawling depend on a number of factors including their depth, sediment type, current, wave action and biological activity (Tuck *et al.*, 1998; Fonteyne, 2000; Smith *et al.*, 2000; Humborstad *et al.*, 2004). In high energy environments physical recovery can take days, whereas recovery in low energy areas can take months (Northeast Region EFHSC, 2002; Wallace & Hoff, 2005). Trawl marks persist for longer periods of time when there is less energy to erode these marks (Mercaldo-Allen & Goldberg, 2011). Marks are likely to persist longer in deep water and in sheltered areas with fine sediments (Tuck *et al.*, 1998; Løkkeborg *et al.*, 2005). Trawl marks in areas of faster water movement are likely to be filled in within a shorter period (Jones, 1992).

Marks from towed gear have been showed to be relatively short lived in coarse sediments, lasting from a few days to no more than a year (De Groot and Lindeboom, 1994; Lindeboom & de Groot 1998). In a sandy habitat on the Grand Banks at 120-146 m depth, marks left by trawl doors (1250 kg oval otter boards) were visible for at least 10 weeks, although were not visible or faintly visible after a year (Schwinghamer *et al.* 1998). Tracks from a 4 metre beam trawl with tickler chain matrix remained visible for 52 hours in coarse sand and 37 in fine sand at a depth of 20 to 30 metres on the Goote Bank off Belgium and the Netherlands. Trawl door scars (10 cm deep and 20 cm wide) from 2300 kg trawl doors on a sandy/gravel bottom were shown to disappear within less than five months in an area of strong currents in the Barents Sea (Humborstad *et al.* 2004). Hand-dug trenches (15 cm deep and 1.2 m long) at a 7 m deep sandy site lasted for 1 to 4 days in Narragansett Bay, Rhode Island (DeAlteris *et al.*, 1999). In the same study, but in the areas of mud at a depth of 14 m, trawl scars (5-10 cm deep with berms 10-20 cm high) persisted for more than 60 days (DeAlteris *et al.* 1999).

In areas characterised by silt or mud, tracks and scars appear to remain visible for longer periods of time compared to sandy and coarser sediments as expected. In a sheltered sealoch in Scotland characterised by sediment with 95% silt and clay, side-scan results revealed that disturbance tracks could still be seen after 18 months after experimental trawling had ceased (Tuck *et al.*, 1998). An alternative measure of seabed properties were altered by fishing was also obtained from RoxAnn measurements (Tuck *et al.* 1998), an acoustic bottom classification system based on the seabeds hardness and roughness (Løkkeborg, 2005). RoxAnn data however indicated recovery after 6 month for physical effects (Tuck *et al.* 1998). Smith *et al.* (2007) also used side scan sonar, as well as underwater video technology, to record the impact of trawling on silty clay sediment at depths of 200 m in Herkalion Bay (Roberts *et al.*, 2010). Trawl marks were evident throughout the year in the study area, including throughout a closed season of four months, by the end of which trawl marks were less visible indicating biogenical weathering (Smith *et al.* 2007; Roberts *et al.*, 2010). No information on the gear type was given. Furrows (5 cm deep, 30-85 cm

wide) made by experimental flounder trawl doors (200 kg) in the Bay of Fundy were visible for at least 2 to 7 months in an area of coarse sediment overlain by up to 10 cm of silty sediment (Brylinsky *et al.* 1994).

The persistence of trawl scars does not necessarily indicate a lack of biological recovery. Trawl scars are likely to persist in areas characterised by low energy, during which time biological recovery may have taken place. It is therefore important to consider the type of environment in which the scars are present as biological recovery may take place over shorter timescales.

Depth

There is an inverse relationship between wave action and depth and so the natural mobility of bottom sediments tends to decrease with depth (Wheeler *et al.*, 2014). The impact of trawling might therefore be more substantial in deeper subtidal habitats due a lack of water movement (Jones, 1992).

In a literature review by Johnson *et al.* (2002), studies which took place at greater depths (>120 m) revealed trawling tracks were evident up to a year after trawling, whilst those at shallow sites (<7m) were no longer visible after a few days.

Benthic communities in dynamic shallow water are likely to be more capable of overcoming disturbance than those in inhabiting deeper and less dynamic environments and as such are likely to have longer recovery times (Jones, 1992).

6.3 Site Condition

Natural England provides information on the condition of designated sites and describes the status of interest features. This is derived from the application of 'Common Standards Monitoring Guidance' which is applied to a subset of 'attributes' of site features as set out in the sites' Regulation 33/35 Conservation Advice document. Feature condition influences the Conservation Objectives in that it is used to determine whether a 'maintain' or 'recover' objective is needed to achieve the target level for each attribute. Natural England's current process for conducting condition assessments for marine features was developed due to requirements to report on condition of Annex 1 features at the national level in 2012/13 under Article 17 of the Habitats Directive. Since then, the methods have been reviewed and Natural England are actively working to revise this process further so that it better fulfils obligations to inform management actions within MPAs and allows them to report on condition. In light of this revision to the assessment methods, the condition assessments for the features of European Marine Sites have not been made available in the timeframe required under the revised approach.

An indication of the condition of site interest features can be inferred, if available, from assessments of SSSIs¹⁵ that underpin the SAC. There are a number of SSSIs which exist within the area covered by Solent Maritime SAC and these, along with relevant feature condition assessments are summarised in Table 7. Note that only SSSI sites where trawling is known to occur have been chosen.

Table 7. Condition assessments of SSSI units within the Solent Maritime SAC

SSSI	Site	Habitat	Unit Name	Condition	Condition	Comments
Name					Threat	
					Risk	

¹⁵ SSSI Condition assessments: <u>http://designatedsites.naturalengland.org.uk/</u>.

					HRA Template v1.1
Langstone Harbour	Littoral Sediment	Langstone Hbr West; Sinah Lake;	Unfavourable – recovering	High	Habitats are affected significantly by sea level rise and 'coastal squeeze. The extent of the habitat exposed at low tide is declining. Changes in water level are also likely to have adverse impacts on the distribution and extent of intertidal sediment biotopes.
Langstone	Littoral	South Binness	Unfavourable	Medium	No information available.
Harbour	Sediment	Island	 recovering 		

Overall, the SSSI condition assessments appear to suggest that littoral sediments within selected SSSI sites are unfavourable, but recovering. When examining reasons for this, it appears from the condition assessment comments that the reasons for this are largely down to sea level rise and subsequent 'coastal squeeze' which are affecting the extent of the habitat and the biotopes that exist there. This would suggest that whilst the condition of many of the sites is unfavourable, the reasons for this do not appear to be related to fishing activities.

6.4 Existing Management Measures

- **Bottom Towed Fishing Gear** byelaw prohibits bottom towed fishing gear over sensitive features including reef features and seagrass within the Solent Maritime SAC closing most of the site to these activities.
- Vessel Used in Fishing byelaw prohibits commercial fishing vessels over 12 metres from the Southern IFCA district. The reduction in vessel size also restricts the type of gear that can be used, with vessels often using lighter towed gear and restricted to carry less static gear.
- Bass Nursery Areas fishing for bass or fishing for any fish using sand-eels as bait by any fishing boat within designated areas is prohibited between 30 April and 1 November. Designated areas include Southampton Water (Cadland foreshore to the Warsash foreshore, but excluding those waters above the Redbridge Causeway on the River Test) and Langstone Harbour (Gunnery Range Light at Eastney Point to Langstone Fairway Buoy, then to the foreshore east of Gunner Point) and all year round in a 556 m radius around the Fawley Power Station outfall.
- **Prohibition of Gathering (Sea Fisheries Resources) in Seagrass Beds** byelaw. This prohibits any person from digging for, fishing for or taking any sea fisheries resource in or from the prohibited areas and does not apply to fishing/taking fisheries resources by means of net, rod and line and hook and line. It also does not apply to fishing for/taking sea fisheries resources using a vessel, provided that no part of the vessels hull in contact with the seabed. No person shall carry a rake, spade, fork or any similar tool in prohibited areas
- The Scallop Fishing (England) Order 2012 states that no more than 8 dredges per side to be towed at any one time and provides details for dredge configuration (i.e. the frame cannot exceed 85 cm in width). The Scallop Fishing Southern Sea Fisheries District Committee legacy byelaw states the maximum number of dredges which can be towed at any time is twelve, provides details of dredge configuration and that no person shall fish for or take any scallop from any fishery on any day before 0700 and after 1900 local time
- EU regulations state that specific required catch percentages apply to different mesh size ranges and target species (refer to 850/98 Annex I). When fishing for sandeels, a mesh size of less than 16 mm is used. When using a mesh of this size to target sandeels, the

minimum percentage of the catch made up of the target species must be 95%. This means any other species, which makes up more than 5% of the catch, must be returned.

6.5 Table 8: Summary of Impacts

The potential pressures, associated impacts, level of exposure and mitigation measures are summarised in table 8. Only relevant attributes identified through the TLSE process have been considered here.

Feature	Sub feature(s)	Attribute	Target	Potential Pressure(s) and Associated Impacts	Likelihood of Impacts Occurring/Level of Exposure to Pressure	Mitigation measures
Estuaries	Subtidal sediment communities (Reg 33); Subtidal mixed sediment; Subtidal sand; (feature data); Subtidal gravel and sand; Subtidal muddy sand; Subtidal mud (Generic)	Topography	Depth should not deviate significantly from an established baseline, subject to natural change.	Abrasion, penetration and disturbance to the surface of the seabed and below the surface of the seabed were identified as potential pressures. Otter boards leave distinct tracks on the seafloor by ploughing grooves and creating berms (sediment mounds) (Jones, 1992; Gilkinson <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002; Thursh & Dayton, 2002). Berms can be up to 20 cm high (DeAlteris <i>et al.</i> , 1999) and furrows can be up to 10 cm deep and 85 cm wide (Brylinsky <i>et al.</i> , 1994; Nilsson & Rosenberg, 2003). The area directly affected by otter boards themselves is only 1/10 of the affected trawling area. Ground ropes and weights can scour and flatten the seabed. The physical recovery of sediments to such impacts largely depends on sediment type (Mercaldo-Allen & Goldberg, 2011). In high energy environments physical recovery can take days, whereas recovery in low energy areas can take months	Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more). Trawling predominantly occurs subtidally, occasionally fringing on the intertidal and is focused in the centre of the Langstone Harbour. Co-location maps of trawl sightings and site feature/sub- features reveals that trawling occurs primarily in areas of subtidal sand and subtidal mixed sediments. All sightings were taken between 2005 and 2010	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining the integrity of the site, whilst also offering long-term stability to guard against the effects of fishing effort displacement. Additional spatial and temporal restrictions of shellfish dredging within the Solent EMS include a network of three dredge management fishing areas and a daily closure from 17:00 to 07:00. Within each dredge fishing management area, clam dredging
		HRA Template v1.1				
---	--------------------------------------	-------------------------------------				
(Northeast Region EFHSC, 2002;		will be prohibited for 35 weeks of				
Wallace & Hoff, 2005). Trawl	between 2011 and 2015.	the year during the spring,				
marks in areas of faster water	Sightings which fringe on the	summer and autumn months.				
movement are likely to be filled in	intertidal generally occur in areas					
within a shorter period (Jones,	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw				
1992). Hand-dug trenches (15 cm	and are located within the known	prohibits commercial fishing				
deep and 1.2 m long) at a 7 m	area of fishing. Only three	vessels over 12 metres from the				
deep sandy site lasted for 1 to 4	sightings occur outside of this	Southern IFCA district. The				
days in Narragansett Bay, Rhode	area and are within the north	reduction in vessel size also				
Island (DeAlteris et al., 1999). In	eastern quarter of the harbour	restricts the type of gear that can				
the same study, but in the areas of	and in an area known as Mallard	be used, with vessels often using				
mud at a depth of 14 m, trawl scars	Sands.	lighter towed gear.				
(5-10 cm deep with berms 10-20						
cm high) persisted for more than	The activity is undertaken by a					
60 days (DeAlteris <i>et al.</i> 1999).	relatively low number of vessels					
Furrows (5 cm deep, 30-85 cm	and takes place during only 6					
wide) made by experimental	months of the year. The time					
flounder trawl doors (200 kg) in the	spent fishing each day is also					
Bay of Fundy were visible for at	limited as trawling is undertaken					
least 2 to 7 months in an area of	for purposes of bait					
coarse sediment overlain by up to	(approximately 1 kg per day) and					
10 cm of silty sediment (Brylinsky	not human consumption. The					
<i>et al</i> . 1994).	gear used in this fishery is					
	extremely light, with otter boards					
	made of wood and the weight of					
	the gear weighing up to 65 kg for					
	larger vessels (10 m in length).					
	Based on the low fishing effort					
	(small number of boats, summer					
	monthly only, limited time spent					
	fishing), the weight of the gear					
	and sediment type of which it					
	occurs, the activity is unlikely to					
	cause any adverse effect on the					
	topography of the subtidal					
	sediment types mentioned. The					
	sediment types are coarse and					
	therefore any changes in					
	topography are likely to recover					
	rapidly (within days). The area in					
	which trawling takes place is likely					
	to be subject to strong tidal flows					

						HRA Template VI.1
Estuaries	Subtidal sediment communities (Reg 33); Subtidal mixed sediment; Subtidal sand; (feature data); Subtidal gravel and sand; Subtidal muddy sand; Subtidal mud (Generic)	Sediment character (Reg 33); Sediment composition and distribution (Interim CA)	Average grain size parameter should not deviate significantly from an established baseline subject to natural change (Reg 33); The distribution of sediment composition types across the feature (and each of its sub- features)(presenc e/absence of areas mapped in GIS), compared to an established baseline, to ensure continued structural habitat integrity and connectivity (Interim CA)	Abrasion, penetration and disturbance to the surface of the seabed and below the surface of the seabed, as well as changes in siltation rates (for subtidal gravel and sand) were identified as potential pressures. Towed demersal fishing gear has been shown to alter sedimentary characteristics and structure, particularly in subtidal muddy sand and mud habitats, as a result of penetration into the sediment (Jones, 1992; Gubbay & Knapman, 1999; Ball <i>et al.</i> 2000; Roberts <i>et al.</i> 2010). Sediment structure may change through the resuspension of sediment, nutrients and contaminants and relocation of stones and boulders (ICES, 1992; Gubbay & Knapman, 1999). Trawling can increase the fraction of fine sediment on superficial layers of the seabed (Queirós <i>et al.</i> 2006). As fine material is suspended, it can be washed away from the surface layers (Gubbay & Knapman, 1999). In Estero Bay of the Californian coast, experimental trawling using a small footrope otter trawl (61 ft head rope, 60 ft ground rope, 8 inch and 4 inch	 which occur at the entrance to the harbour, thus supporting a rapid physical recovery. Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more). Trawling predominantly occurs subtidally, occasionally fringing on the intertidal and is focused in the centre of the Langstone Harbour. Co-location maps of trawl sightings and site feature/subfeatures reveals that trawling occurs primarily in areas of subtidal sand and subtidal mixed sediments. All sightings were taken between 2005 and 2010 and no sightings were made between 2011 and 2015. Sightings which fringe on the 	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining the integrity of the site, whilst also offering long-term stability to guard against the effects of fishing effort displacement. Additional spatial and temporal restrictions of shellfish dredging within the Solent EMS include a network of three dredge management fishing areas and a daily closure from 17:00 to 07:00. Within each dredge fishing management area, clam dredging will be prohibited for 35 weeks of the year during the spring, summer and autumn months.
				discs, 3.5 ft x 4.5 700 lbs ft trawl doors) (Lindholm <i>et al.</i> , 2013) led to a slight increase in silt content and 2% decrease in the fine sand fraction, although post-trawl samples displayed the same grain	intertidal generally occur in areas of intertidal muddy sand and sand and are located within the known area of fishing. Only three sightings occur outside of this area and are within the north	Vessel Used in Fishing byelaw prohibits commercial fishing vessels over 12 metres from the Southern IFCA district. The reduction in vessel size also

		HRA Template v1.1
size distribution as pre-trawl	eastern quarter of the harbour	restricts the type of gear that can
samples (Lindholm <i>et al</i> . 2013).	and in an area known as Mallard	be used, with vessels often using
	Sands.	lighter towed gear.
There is limited information on		
resultant sediment plumes from	Changes in sediment character	
trawling. The resuspension of	occur particularly in muddy sand	
sediment is known to occur	and mud habitats, which are	
through turbulence from trawl	sediments types unlikely to be	
doors (Main & Sangster, 1979;	affected by trawling. The activity	
1981). Resultant sediment plumes	is undertaken by a relatively low	
from shellfish dredging can lead to	number of vessels and takes part	
areas of elevated turbidity up to 30	during only 6 months of the year.	
metres beyond the dredge zone	The time spent fishing each day is	
(Manning, 1957; Haven, 1979;	also limited as trawling is	
Manzi et al., 1985; Maier et al.,	undertaken for purposes of bait	
1998), although in most cases the	(approximately 1 kg per day) and	
amount of suspended sediment	not human consumption. The	
rapidly returns to low levels with	gear used in this fishery is	
distance from the dredge activity	extremely light, with otter boards	
(Kyte et al., 1976; Maier et al.,	made of wood and the weight of	
1998) with 98% resettling within 15	the gear weighing up to 65 kg for	
m (Mercaldo-Allen & Goldberg,	larger vessels (10 m in length).	
2011). Dispersed sediments may	This is likely to reduce the level of	
take 30 minutes to 24 hours to	sediment resuspension. Based on	
resettle (Lambert & Goudreau	the low fishing effort (small	
1996; Northeast Region EFHSC	number of boats, summer monthly	
2002). Shallow water environments	only, limited time spent fishing),	
with high silt and clay content are	the weight of the gear and	
likely to experience larger plumes	sediment type of which it occurs,	
and greater turbidity (Ruffin 1995;	the activity is unlikely to cause	
Tarnowski 2006). In areas of tide	any adverse effect on the	
and current, the effects of sediment	sediment characteristics of the	
resuspension are short in duration	subtidal sediment types	
and the effects of redeposition are	mentioned. The area within	
not permanently, particularly with	Langstone Harbour where	
respect to those adapted to storm	trawling takes places are areas of	
events and sediment transport by	relatively strong tide and current	
currents (Jones, 1992).	and therefore the effects of	
	sediment resuspension on	
The physical recovery of sediments	sediment character are short in	
to such impacts largely depends on	duration and temporary, with such	
sediment type (Mercaldo-Allen &	areas likely to be adapted to	

						HRA Template v1.1
				Goldberg, 2011). In high energy	storm events and sediment	
				environments physical recovery	transport by currents (Jones,	
				can take days, whereas recovery in	1992).	
				low energy areas can take months		
				(Northeast Region EFHSC, 2002;		
				Wallace & Hoff, 2005).		
Estuaries	Subtidal	Range and	Distribution and	The selection extraction of species	Reports of trawling with the	Bottom Towed Fishing Gear
	sediment	distribution of	extent of	and removal of non-target species,	Langstone Harbour from local	byelaw prohibits bottom towed
	communities	characteristic	characteristic	as well as changes in siltation rates	IFCOs reveal the total number of	fishing gear over sensitive
	(Reg 33);	subtidal	biotopes should	were identified as potential	vessels operating within the	features including seagrass within
	Subtidal	sediment	not deviate from	pressures.	fishery is approximately 5, with 1	the Solent Maritime SAC closing
	mixed	biotopes, for	an established		or 2 vessels operating daily during	areas of the site to these
	sediment;	example:	baseline subject	In areas of gravel and sand,	the summer (May to October).	activities. Southern IFCA is
	Subtidal	IMU biotopes	to natural change	siltation and smothering of faunal	Sightings data, provided by	currently amending this byelaw to
	sand;	(Reg 33)	(Reg 33); The	communities is a key concern.	Langstone Harbour, reveal a	include an additional network of
	(feature	/Presence	presence and	Areas of sand and gravel are	relatively low level of fishing effort	permanent closures areas to
	data);	and spatial	spatial distribution	highly sensitive to siltation as the	within Langstone Harbour, with an	bottom towed fishing gear. These
	Subtidal	distribution of	of subtidal mixed	marine communities which are	average of 0.9 vessels sighted	amendments are being made as
	gravel and	subtidal	sediment/ subtidal	sensitive to inputs of fine material	more than twice or more in a	part of a suite of new measures to
	sand;	mixed	sand/ subtidal	(English Nature, 2001). There is	month in 2014. This was the	manage shellfish dredging within
	Subtidal	sediment/	coarse sediment	limited information on resultant	highest average between 2012	the Solent EMS. The network of
	muddy sand;	subtidal	communities	sediment plumes from trawling.	and 2015, except for 2012 (1.5	new closure areas is designed to
	Subtidal mud	sand/subtidal	according to the	The resuspension of sediment is	fishing vessels sighted twice or	protect good examples of low-
	(Generic)	coarse	map (Interim CA);	known to occur through turbulence	more).	energy SAC habitats, maintaining
		sediment	The abundance of	from trawl doors (Main & Sangster,		the integrity of the site, whilst also
		communities	listed typical	1979; 1981). Resultant sediment	Trawling predominantly occurs	offering long-term stability to
		(Interim	species, to enable	plumes from shellfish dredging can	subtidally, occasionally fringing on	guard against the effects of
		CA)/Presenc	each of them to	lead to areas of elevated turbidity	the intertidal and is focused in the	fishing effort displacement.
		e and	be a viable	up to 30 metres beyond the dredge	centre of the Langstone Harbour.	Additional spatial and temporal
		abundance	component of the	zone (Manning, 1957; Haven,	Co-location maps of trawl	restrictions of shellfish dredging
		of typical	habitat (Interim	1979; Manzi et al., 1985; Maier et	sightings and site feature/sub-	within the Solent EMS include a
		species	CA); The species	al., 1998), although in most cases	features reveals that trawling	network of three dredge
		(Interim CA)	composition of	the amount of suspended sediment	occurs primarily in areas of	management fishing areas and a
		/Species	component	rapidly returns to low levels with	subtidal sand and subtidal mixed	daily closure from 17:00 to 07:00.
		composition	communities	distance from the dredge activity	sediments. All sightings were	Within each dredge fishing
		of	(Interim CA)	(Kyte <i>et al.</i> , 1976; Maier <i>et al.</i> ,	taken between 2005 and 2010	management area, clam dredging
		component		1998) with 98% resettling within 15	and no sightings were made	will be prohibited for 35 weeks of
		communities		m (Mercaldo-Allen & Goldberg,	between 2011 and 2015.	the year during the spring,
		(Interim CA)		2011). Dispersed sediments may	Sightings which fringe on the	summer and autumn months.
				take 30 minutes to 24 hours to	intertidal generally occur in areas	
				resettle (Lambert & Goudreau	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw
				1996; Northeast Region EFHSC	and are located within the known	prohibits commercial fishing
				1000, Northoast Region LITIOU		,

		HRA Template v1.1
200).	area of fishing. Only three	vessels over 12 metres from the
	sightings occur outside of this	Southern IFCA district. The
Bottom towed fishing gear can	area and are within the north	reduction in vessel size also
result in the mortality of non-target	eastern quarter of the harbour	restricts the type of gear that can
species through direct physical	and in an area known as Mallard	be used, with vessels often using
damage inflicted by the passage of	Sands.	lighter towed gear.
the trawl or indirectly through		
damage, exposure and subsequent	Within the Solent Maritime SAC,	
predation (Roberts et al. 2010).	the key biotopes associated with	
This can lead to long-term changes	littoral gravels and sands, include	
in the benthic community structure	burrowing amphipods and	
(Jones, 1992), including decreases	polychaetes (Arenicola marina) in	
in biomass, species richness,	clean sand shores, burrowing	
production, diversity, evenness (as	amphipods Pontocrates spp and	
a result of increased dominance)	Bathyporeia spp in lower shore	
and alterations to species	clean sand and dense Lanice	
composition and community	conchilega in tide swept lower	
structure (Tuck et al., 1998;	shore sand. It is important to note	
Roberts <i>et al.</i> 2010).	the biotopes mentioned are those	
	associated with littoral gravels	
The impact of otter trawls on	and sands and may differ in	
benthic communities varies	subtidal areas. Lanice conchilega	
between studies, notably between	are highly incapable of movement	
sediment types. The initial impact	in response to disturbance (Goss-	
on benthic communities from otter	Custard, 1977). Bergman and	
trawl disturbance on mud was	Hup (1992) reported reductions of	
estimated to be -29%, -15% on	65% in the mean density of small	
sand and +3% on gravel (Kaiser et	L. conchilega (0.5-1.5 cm) after	
<i>al.</i> , 2006; Hinz <i>et al.</i> , 2009).	three-fold beam trawling on fine to	
Experimental fishing manipulations	hard medium hardy-sand, well	
based on sandy sediments have	packed sediments in the North	
reported mixed results. A number	Sea. An increase of 15% in the	
of studies report very little or no	mean density of large L.	
effect from trawling disturbance	conchilega (1.5-5cm) however	
(Queirós et al. 2006; Lindholm et	was also reported. Aside of L.	
al., 2013), whilst others report	conchilega and a number of other	
significant reductions (Bergman &	species, experimental fishing	
van Santbrink, 2000; Moran &	manipulations have shown that	
Stephenson, 2000; Kenchington et	impacts of trawling disturbance on	
al., 2001). Bergman and van	annelids are limited and in some	
Santbrink (2000) reported direct	instances may be positive.	
 mortality of 0-21% for bivalves, 12-		

		HRA Template v1.1
16% for echinoderms and 19-30%	Key biotopes associated with	
for crustaceans after a single	subtidal muddy sand habitats	
sweep with a commercial otter	include estuarine sublittoral muds	
trawl in sandy areas 30-40 m deep	containing Aphelochaeta marioni	
in the North Sea.	and Tubificoides spp invariable	
	salinity infralittoral mud and	
Experimental fishing manipulations	Nephtys hombergii and	
investigating the impacts of otter	Tubificoides spp in variable	
trawling on muddy sediments	salinity infralittoral soft mud.	
report relatively modest changes in	Nephtys spp. have been shown to	
benthic communities in the short-	exhibit adverse responses to	
term (Hinz <i>et al.</i> , 2009).	trawling disturbance (Kaiser et al.,	
Experimental trawling, with a	1998; Tuck et al., 1998). Ball et al.	
commercial otter trawl (dimensions	(2000) however reported a	
unknown), over a muddy substrate	decrease in abundance in most	
at a depth of 30 to 40 m off the	species following experimental	
Catalan coast in Spain reported a	trawling with a Nephrops otter	
similar percentage abundance of	trawl, except for a large proportion	
most major taxa between fished	of polychaete species which	
and unfished sites (Sanchez et al.,	exhibited an increase in	
2000). Tuck et al. (1998)	abundance, including the large	
investigated the biological effects	scavenger such as Nephtys incisa	
of trawling disturbance on a	(16%).	
sheltered sealoch in Scotland at		
35-40 m depth in an area	Information on biotopes	
characterised by 95% silt and clay	associated with subtidal mixed	
using modified rockhopper ground	sediments is not provided in the	
gear without a net. Infaunal	Regulation 33 Advice package	
community structure became	and it is therefore difficult to	
significantly altered after 5 months	assess the sensitivity of this	
of fishing and remained so	biotope of trawling. Littoral mixed	
throughout the duration of the	sediment biotopes include Mya	
experimental. No significant	arenaria and polychaetes in	
differences in infaunal species	muddy gravel shores and Hediste	
richness however were detected	diversicolor and Streblospio	
during the first 10 months of	shrubsolii in variable salinity	
trawling. After 16 months of	gravelly mud. Mya arenaria, also	
trawling disturbance, and	known as the gaper clam, is a	
throughout the recovery period,	long-lived and takes several years	
species richness was significantly	to mature, so recovery times	
higher in the trawled site. No	relatively long (Wheeler et al.,	
effects on total biomass were	2014). This biotope however is	

			HRA Template v1.1
	orted. Infaunal abundance	typical of reduced salinity	
	ered after trawling commenced	sheltered marine inlets where	
and	I species diversity was lower in	trawling is unlikely to occur.	
the	fished site throughout the	Hediste diversicolor and	
expe	eriment, including prior to	Streblospio shrubsolii on the other	
fishi	ing.	hand were not been identified as	
		being sensitive to trawling	
The	e timescale for recovery largely	disturbance in the studies	
depe	ends on sediment type,	examined.	
asso	ociated fauna and rate of		
natu	ural disturbance (Roberts et al.,	Whilst it is recognised that	
2010	0). Generally speaking, in	subtidal gravel and sand may	
loca	ations where natural	support a sensitive polychaete	
distu	urbance levels are high, the	species (L. conchilega), the	
asso	ociated fauna are characterised	activity is undertaken by a	
by s	species adapted to withstand	relatively low number of vessels	
and	recover from disturbance	and is takes place during only 6	
(Col	llie et al., 2000; Dernie et al.,	months of the year. The time	
2003	3; Roberts <i>et al</i> ., 2010). In a	spent fishing each day is also	
rece	ent meta-analysis on the	limited as trawling is undertaken	
biolo	ogical impacts of different	for purposes of bait	
fishi	ing activities, recovery of	(approximately 1 kg per day) and	
	ddy sands was predicted to take	not human consumption. The	
mon	nths to years and sand was	gear used in this fishery is	
	dicted to take days to months	extremely light, with otter boards	
(Kai	iser et al., 2006). Kaiser et al.	made of wood and the weight of	
	06) reported recovery times in	the gear weighing up to 65 kg for	
	abundance of biota of less than	larger vessels (10 m in length).	
	days from beam trawling in	Based on the low fishing effort	
	nly energetic, shallow, soft-	(small number of boats, summer	
	iment habitats of sand and	monthly only, limited time spent	
	ddy sand. Collie <i>et al.</i> (2000)	fishing), the weight of the gear	
	orted recovery times of 100	and sediment type over which it	
days		occurs, the activity is unlikely to	
	nmunities from trawling	cause an adverse effect on the	
	urbance. Tuck <i>et al</i> . (1998)	benthic communities and biotopes	
	died the biological effects of	associated with the subtidal	
	r trawling in a sheltered	sediment types previously	
	loch in Scotland at 35-40 m	mentioned. Furthermore, the	
	th in an area characterised by	recovery periods for this sediment	
	6 silt and clay. A similar	type are known to be relatively	
	dition to the reference site was	rapid (100 days) and will allow for	

						HRA Template v1.1
				reached after 18 months, with the abundance of individuals shown to return to similar levels recorded prior to trawling (Tuck <i>et al.</i> , 1998). Partial recovery of infaunal species occurred after 12 months and effects on epifauna were largely indistinguishable from the reference site 6 months after fishing ceased (Tuck <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002). Brylinsky <i>et al.</i> (1994) reported the a rapid recovery of nematode abundance within 4 to 6 weeks following experimental flounder trawling on intertidal silty sediments in the Bay of Fundy.	recovery during the winter months when the activity does not take place. The area in which trawling takes place is likely to be subject to strong tidal flows and communities within this area are likely to be naturally disturbed and adapted to such conditions. Any impacts from siltation or sediment resuspension are likely to be very limited as the area within Langstone Harbour where trawling takes places is an area of relatively strong tide and current and therefore the effects of sediment resuspension on sediment character are short in duration and temporary, with such areas likely to be adapted to storm events and sediment transport by currents (Jones, 1992).	
mudflats and sandflats	Intertidal mud (Generic & Interim CA); Intertidal mud communities (Reg 33)	Topography	Shore profile should not deviate significantly from an established baseline subject to natural change (Reg 33); The presence of topographic features, while allowing for natural responses to hydrodynamic regime, by preventing erosion or deposition through human- induced activity	Abrasion, penetration and disturbance to the surface of the seabed and below the surface of the seabed and below the surface of the seabed were identified as potential pressures. Otter boards leave distinct tracks on the seafloor by ploughing grooves and creating berms (sediment mounds) (Jones, 1992; Gilkinson <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002; Thursh & Dayton, 2002). Berms can be up to 20 cm high (DeAlteris <i>et al.</i> , 1999) and furrows can be up to 10 cm deep and 85 cm wide (Brylinsky <i>et al.</i> , 1994; Nilsson & Rosenberg, 2003). The area directly affected by otter boards themselves is only 1/10 of	Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more).	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining the integrity of the site, whilst also

			HRA Template v1.1
(Interim CA)	the affected trawling area. Ground	Trawling predominantly occurs	offering long-term stability to
	ropes and weights can scour and		guard against the effects of
	flatten the seabed.	the intertidal and is focused in the	fishing effort displacement.
		centre of the Langstone Harbour.	Additional spatial and temporal
	The physical recovery of sediments	Co-location maps of trawl	restrictions of shellfish dredging
	to such impacts largely depends on	sightings and site feature/sub-	within the Solent EMS include a
	sediment type (Mercaldo-Allen &	features reveals that trawling	network of three dredge
	Goldberg, 2011). In high energy	occurs primarily in areas of	management fishing areas and a
	environments physical recovery	subtidal sand and subtidal mixed	daily closure from 17:00 to 07:00.
	can take days, whereas recovery in		Within each dredge fishing
	low energy areas can take months	taken between 2005 and 2010	management area, clam dredging
	(Northeast Region EFHSC, 2002;	and no sightings were made	will be prohibited for 35 weeks of
	Wallace & Hoff, 2005). Trawl	between 2011 and 2015.	the year during the spring,
	marks in areas of faster water	Sightings which fringe on the	summer and autumn months.
	movement are likely to be filled in	intertidal generally occur in areas	
	within a shorter period (Jones,	of intertidal muddy sand and sand	
	1992). Hand-dug trenches (15 cm	and are located within the known	prohibits commercial fishing
	deep and 1.2 m long) at a 7 m	area of fishing. Only three	vessels over 12 metres from the
	deep sandy site lasted for 1 to 4	sightings occur outside of this	Southern IFCA district. The
	days in Narragansett Bay, Rhode	area and are within the north	reduction in vessel size also
	Island (DeAlteris et al., 1999). In	eastern quarter of the harbour	restricts the type of gear that can
	the same study, but in the areas of	and in an area known as Mallard	be used, with vessels often using
	mud at a depth of 14 m, trawl scars	Sands, two of which occur in	lighter towed gear.
	(5-10 cm deep with berms 10-20	areas of intertidal mud.	
	cm high) persisted for more than		
	60 days (DeAlteris <i>et al.</i> 1999).	The activity is known to	
	Furrows (5 cm deep, 30-85 cm	infrequently fringe on the	
	wide) made by experimental	intertidal, with only two sightings	
	flounder trawl doors (200 kg) in the	of trawling in intertidal mud over	
	Bay of Fundy were visible for at	10 years (2005-2015). The activity	
	least 2 to 7 months in an area of	is undertaken by a relatively low	
	coarse sediment overlain by up to	number of vessels and takes	
	10 cm of silty sediment (Brylinsky	place during only 6 months of the	
	<i>et al.</i> 1994).	year. The time spent fishing each	
		day is also limited as trawling is	
		undertaken for purposes of bait	
		(approximately 1 kg per day) and	
		not human consumption. The	
		gear used in this fishery is	
		extremely light, with otter boards	
		made of wood and the weight of	
		the gear weighing up to 65 kg for	

						HRA Template v1.1
					larger vessels (10 m in length). Based on the low fishing effort (small number of boats, summer	
					monthly only, limited time spent fishing), the weight of the gear	
					and infrequent occurrence over	
					intertidal mud, the activity is	
					unlikely to cause any adverse effect on the topography.	
Intertidal mudflats	Intertidal mud	Sediment character	Average particle size analysis	Abrasion, penetration and disturbance to the surface of the	Reports of trawling with the Langstone Harbour from local	Bottom Towed Fishing Gear byelaw prohibits bottom towed
and	(Generic &	(Reg 33);	parameters	seabed and below the surface of	IFCOs reveal the total number of	fishing gear over sensitive
sandflats	Interim CA); Intertidal	Sediment composition	should not deviate significantly from	the seabed, as well as changes in siltation rates (for subtidal gravel	vessels operating within the fishery is approximately 5, with 1	features including seagrass within the Solent Maritime SAC closing
	mud communities	and distribution	an established baseline subject	and sand) were identified as potential pressures.	or 2 vessels operating daily during the summer (May to October).	areas of the site to these activities. Southern IFCA is
	(Reg 33)	(Interim CA)	to natural change	potential pressures.	Sightings data, provided by	currently amending this byelaw to
			(Reg 33); The	Towed demersal fishing gear has	Langstone Harbour, reveal a	include an additional network of
			distribution of sediment	been shown to alter sedimentary characteristics and structure,	relatively low level of fishing effort within Langstone Harbour, with an	permanent closures areas to bottom towed fishing gear. These
			composition types	particularly in subtidal muddy sand	average of 0.9 vessels sighted	amendments are being made as
			across the feature	and mud habitats, as a result of	more than twice or more in a	part of a suite of new measures to
			(and each of its sub-	penetration into the sediment (Jones, 1992; Gubbay & Knapman,	month in 2014. This was the highest average between 2012	manage shellfish dredging within the Solent EMS. The network of
			features)(presenc	1999; Ball <i>et al.</i> 2000; Roberts <i>et</i>	and 2015, except for 2012 (1.5	new closure areas is designed to
			e/absence of	al. 2010). Sediment structure may	fishing vessels sighted twice or	protect good examples of low-
			areas mapped in	change through the resuspension of sediment, nutrients and	more).	energy SAC habitats, maintaining
			GIS), compared to an established	of sediment, nutrients and contaminants and relocation of	Trawling predominantly occurs	the integrity of the site, whilst also offering long-term stability to
			baseline, to	stones and boulders (ICES, 1992;	subtidally, occasionally fringing on	guard against the effects of
			ensure continued	Gubbay & Knapman, 1999).	the intertidal and is focused in the	fishing effort displacement.
			structural habitat integrity and	Trawling can increase the fraction of fine sediment on superficial	centre of the Langstone Harbour. Co-location maps of trawl	Additional spatial and temporal restrictions of shellfish dredging
			connectivity	layers of the seabed (Queirós et al.	sightings and site feature/sub-	within the Solent EMS include a
			(Interim CA)	2006). As fine material is	features reveals that trawling	network of three dredge
				suspended, it can be washed away from the surface layers (Gubbay &	occurs primarily in areas of subtidal sand and subtidal mixed	management fishing areas and a daily closure from 17:00 to 07:00.
				Knapman, 1999). In Estero Bay of	sediments. All sightings were	Within each dredge fishing
				the Californian coast, experimental	taken between 2005 and 2010	management area, clam dredging
				trawling using a small footrope otter trawl (61 ft head rope, 60 ft	and no sightings were made between 2011 and 2015.	will be prohibited for 35 weeks of the year during the spring,
				ground rope, 8 inch and 4 inch	Sightings which fringe on the	

 			HRA Template v1.1
	discs, 3.5 ft x 4.5 700 lbs ft trawl	intertidal generally occur in areas	
	doors) (Lindholm et al., 2013) led	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw
	to a slight increase in silt content	and are located within the known	prohibits commercial fishing
	and 2% decrease in the fine sand	area of fishing. Only three	vessels over 12 metres from the
	fraction, although post-trawl	sightings occur outside of this	Southern IFCA district. The
	samples displayed the same grain	area and are within the north	reduction in vessel size also
	size distribution as pre-trawl	eastern quarter of the harbour	restricts the type of gear that can
	samples (Lindholm et al. 2013).	and in an area known as Mallard	be used, with vessels often using
		Sands, two of which occur in	lighter towed gear.
	There is limited information on	areas of intertidal mud.	
	resultant sediment plumes from		
	trawling. The resuspension of	Changes in sediment character	
	sediment is known to occur	occur particularly in muddy sand	
	through turbulence from trawl	and mud habitats, which are	
	doors (Main & Sangster, 1979;	sediments types that are not	
	1981). Resultant sediment plumes	frequently trawled. The activity is	
	from shellfish dredging can lead to	known to infrequently fringe on	
	areas of elevated turbidity up to 30	the intertidal, with only two	
	metres beyond the dredge zone	sightings of trawling in intertidal	
	(Manning, 1957; Haven, 1979;	mud over 10 years (2005-2015).	
	Manzi <i>et al.</i> , 1985; Maier <i>et al.</i> ,	The activity is undertaken by a	
	1998), although in most cases the	relatively low number of vessels	
	amount of suspended sediment	and takes place during only 6	
	rapidly returns to low levels with	months of the year. The time	
	distance from the dredge activity	spent fishing each day is also	
	(Kyte et al., 1976; Maier et al.,	limited as trawling is undertaken	
	1998) with 98% resettling within 15	for purposes of bait	
	m (Mercaldo-Allen & Goldberg,	(approximately 1 kg per day) and	
	2011). Dispersed sediments may	not human consumption. The	
	take 30 minutes to 24 hours to	gear used in this fishery is	
	resettle (Lambert & Goudreau	extremely light, with otter boards	
	1996; Northeast Region EFHSC	made of wood and the weight of	
	2002). Shallow water environments	the gear weighing up to 65 kg for	
	with high silt and clay content are	larger vessels (10 m in length).	
	likely to experience larger plumes	This is likely to reduce the level of	
	and greater turbidity (Ruffin 1995;	sediment resuspension. Based on	
	Tarnowski 2006). In areas of tide	the low fishing effort (small	
	and current, the effects of sediment	number of boats, summer monthly	
	resuspension are short in duration	only, limited time spent fishing),	
	and the effects of redeposition are	the weight of the gear and	
	not permanently, particularly with	infrequent occurrence over	
	respect to those adapted to storm	intertidal mud, the activity is	
 1		· · · · · · · · · · · · · · · · · · ·	

						HRA Template v1.1
				events and sediment transport by currents (Jones, 1992).	unlikely to cause any adverse effect on sediment characteristics.	
				The physical recovery of sediments to such impacts largely depends on sediment type (Mercaldo-Allen & Goldberg, 2011). In high energy environments physical recovery can take days, whereas recovery in low energy areas can take months (Northeast Region EFHSC, 2002; Wallace & Hoff, 2005).		
Intertidal mudflats and sandflats	Intertidal mud (Generic & Interim CA); Intertidal mud communities (Reg 33)	Range and distribution of characteristic mud biotopes (Reg 33); Presence and spatial distribution of intertidal mud communities (Interim CA); Presence and abundance of typical species (Interim CA); Species composition of component communities (Interim CA)	Range and distribution should not deviate significantly from an established baseline subject to natural change (Reg 33); The presence and spatial distribution of intertidal mud communities according to the map (Interim CA); The abundance of listed typical species, to enable each of them to be a viable component of the habitat (Interim CA); The species composition of component communities (Interim CA)	The selection extraction of species and removal of non-target species, were identified as potential pressures. Bottom towed fishing gear can result in the mortality of non-target species through direct physical damage inflicted by the passage of the trawl or indirectly through damage, exposure and subsequent predation (Roberts <i>et al.</i> 2010). This can lead to long-term changes in the benthic community structure (Jones, 1992), including decreases in biomass, species richness, production, diversity, evenness (as a result of increased dominance) and alterations to species composition and community structure (Tuck <i>et al.</i> , 1998; Roberts <i>et al.</i> 2010). The impact of otter trawls on benthic communities varies between studies, notably between sediment types. The initial impact on benthic communities from otter trawl disturbance on mud was	subtidal sand and subtidal mixed sediments. All sightings were	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining the integrity of the site, whilst also offering long-term stability to guard against the effects of fishing effort displacement. Additional spatial and temporal restrictions of shellfish dredging within the Solent EMS include a network of three dredge management fishing areas and a daily closure from 17:00 to 07:00. Within each dredge fishing management area, clam dredging

		HRA Template v1.1
estimated to be -29%, -15% on	and no sightings were made	will be prohibited for 35 weeks of
sand and +3% on gravel (Kaiser et		
<i>al.</i> , 2006; Hinz <i>et al.</i> , 2009).	Sightings which fringe on the	summer and autumn months.
Experimental fishing manipulations	intertidal generally occur in areas	
investigating the impacts of otter	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw
trawling on muddy sediments	and are located within the known	prohibits commercial fishing
report relatively modest changes in	area of fishing. Only three	vessels over 12 metres from the
benthic communities in the short-	sightings occur outside of this	Southern IFCA district. The
term (Hinz <i>et al.</i> , 2009).	area and are within the north	reduction in vessel size also
Experimental trawling, with a	eastern quarter of the harbour	restricts the type of gear that can
commercial otter trawl (dimensions	and in an area known as Mallard	be used, with vessels often using
unknown), over a muddy substrate	Sands, two of which occur in	lighter towed gear.
at a depth of 30 to 40 m off the	areas of intertidal mud.	
Catalan coast in Spain reported a		
similar percentage abundance of	Within the Solent Maritime SAC,	
most major taxa between fished	the key biotopes associated with	
(polychaetes, 51.5%; crustaceans,	intertidal mud habitats include	
10.9%; molluscs, 34.7%; other	Hediste diversicolor and Macoma	
taxa, 2.9%) and unfished	balthica in sand mud shores,	
(polychaetes, 48.9%; crustaceans,	Hediste diversicolor, Macoma	
11.3%; molluscs, 36.1%; other	<i>balthica</i> and <i>Mya arenaria</i> in	
taxa, 3.7%) sites (Sanchez et al.,	sandy mud shores, Hediste	
2000). Tuck <i>et al.</i> (1998)	diversicolor, Macoma balthica and	
investigated the biological effects	Phgospio elegans in sandy mud	
of trawling disturbance on a	shores, Hediste diversicolor and	
sheltered sealoch in Scotland at	oligochaetes in low salinity mud	
35-40 m depth in an area	shores, Hediste diversicolor and	
characterised by 95% silt and clay	Scrobicularia plana in reduced	
using modified rockhopper ground	salinity mud shores and Hediste	
gear without a net. Infaunal	diversicolor and Streblospio	
community structure became	shrubnsolii in sandy mud or soft	
significantly altered after 5 months	mud shores. Littoral mud biotopes	
of fishing and remained so	often support high numbers of	
throughout the duration of the	polychaetes and bivalve molluscs.	
experimental. No significant	The specific species mentioned	
differences in infaunal species	above have not been identified as	
richness however were detected	being sensitive to trawling	
during the first 10 months of	disturbance in the studies	
trawling. After 16 months of	examined. Deep burrowing	
trawling disturbance, and	molluscs, such as Macoma	
throughout the recovery period,	<i>balthica</i> , are known to have	
species richness was significantly	limited capability to escape and	

		HRA Template v1.1
	higher in the trawled site. No Mya arenaria, also known as th	3
	effects on total biomass were gaper clam, is a long-lived an	l t
	reported. Infaunal abundance takes several years to mature, s	2
	lowered after trawling commenced recovery times are much longe	r
	and species diversity was lower in than smaller species (Wheeler of	et
	the fished site throughout the al., 2014). Generally speaking	,
	experiment, including prior to experimental fishin	1
	fishing. Brylinsky et al. (1994) manipulations have shown that	ť
	reported reductions in the impacts of trawling disturbance o	
	abundance of nematodes and no annelids are limited and in som	
	effect on either the composition or instances may be positive.	
	abundance of polychaetes after	
	experimental flounder trawling on The activity is known t	2
	intertidal silty sediment in the Bay infrequently fringe on th	2
	of Fundy, although the rate of intertidal, with only two sighting	
	recovery was rapid following of trawling in intertidal mud over	
	trawling disturbance. 10 years (2005-2015). The activit	
	is undertaken by a relatively lo	
	The timescale for recovery largely number of vessels and take	
	depends on sediment type, place during only 6 months of th	
	associated fauna and rate of year. The time spent fishing eac	
	natural disturbance (Roberts et al., day is also limited as trawling i	
	2010). Generally speaking, in undertaken for purposes of ba	
	locations where natural (approximately 1 kg per day) an	
	disturbance levels are high, the not human consumption. Th	
	associated fauna are characterised gear used in this fishery i	
	by species adapted to withstand extremely light, with otter board	
	and recover from disturbance made of wood and the weight of	
	(Collie <i>et al.</i> , 2000; Dernie <i>et al.</i> , the gear weighing up to 65 kg fo	
	2003; Roberts <i>et al.</i> , 2010). More larger vessels (10 m in length	
	stable habitats, which are often Based on the low fishing effo	
	distinguished by high diversity (small number of boats, summe	
	epifauna, are likely to take a monthly only, limited time sper	
	greater time to recover (Roberts <i>et</i> fishing), the weight of the gea	
	al., 2010). Kaiser et al. (2006) and infrequent occurrence over	
	reported recovery times in the intertidal mud, the activity	
	abundance of biota of less than 50 unlikely to cause an advers	
	days from beam trawling in highly effect on the benthic communitie	
	energetic, shallow, soft-sediment and biotopes associated wit	
	habitats of sand and muddy sand. subtidal mixed sediments	
	Tuck et al. (1998) studied the Furthermore, the infrequer	
	biological effects of otter trawling in a nature of the activity is likely t	
		<u>/ </u>

				HRA Template v1.1
Intertidal mudflats and sandflats; Estuaries Intertidal mud and sand (Generic); Intertidal muddy sand communities; Intertidal sand communities; Intertidal mudflat sand Topography	Shore profile should not deviate significantly from an established baseline subject to natural change (Reg 33); The presence of topographic features, while allowing for natural responses to hydrodynamic regime, by preventing erosion or	a sheltered sealoch in Scotland at 35-40 m depth in an area characterised by 95% silt and clay. A similar condition to the reference site was reached after 18 months, with the abundance of individuals shown to return to similar levels recorded prior to trawling (Tuck <i>et al.</i> , 1998). Partial recovery of infaunal species occurred after 12 months and effects on epifauna were largely indistinguishable from the reference site 6 months after fishing ceased (Tuck <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002). Brylinsky <i>et al.</i> (1994) reported the a rapid recovery of nematode abundance within 4 to 6 weeks following experimental flounder trawling on intertidal silty sediments in the Bay of Fundy. Abrasion, penetration and disturbance to the surface of the seabed and below the surface of the seabed were identified as potential pressures. Otter boards leave distinct tracks on the seafloor by ploughing grooves and creating berms (sediment mounds) (Jones, 1992; Gilkinson <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002; Thursh & Dayton, 2002). Berms can be up to 20 cm high (DeAlteris <i>et al.</i> , 1999) and furrows can be up to 10 cm deep and 85 cm wide (Brylinsky <i>et al.</i> , 1994; June	Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to
	preventing	can be up to 10 cm deep and 85	highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more).	the Solent EMS. The network of

		HRA Template v1.1
flatten the seabed.	the intertidal and is focused in the	fishing effort displacement.
	centre of the Langstone Harbour.	Additional spatial and temporal
The physical recovery of sediments	Co-location maps of trawl	restrictions of shellfish dredging
to such impacts largely depends on	sightings and site feature/sub-	within the Solent EMS include a
sediment type (Mercaldo-Allen &	features reveals that trawling	network of three dredge
Goldberg, 2011). In high energy	occurs primarily in areas of	management fishing areas and a
environments physical recovery	subtidal sand and subtidal mixed	daily closure from 17:00 to 07:00.
can take days, whereas recovery in	sediments. All sightings were	Within each dredge fishing
low energy areas can take months	taken between 2005 and 2010	management area, clam dredging
(Northeast Region EFHSC, 2002;	and no sightings were made	will be prohibited for 35 weeks of
Wallace & Hoff, 2005). Trawl	between 2011 and 2015.	the year during the spring,
marks in areas of faster water	Sightings which fringe on the	summer and autumn months.
movement are likely to be filled in	intertidal generally occur in areas	
within a shorter period (Jones,	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw
1992). Hand-dug trenches (15 cm	and are located within the known	prohibits commercial fishing
deep and 1.2 m long) at a 7 m	area of fishing. Only three	vessels over 12 metres from the
deep sandy site lasted for 1 to 4	sightings occur outside of this	Southern IFCA district. The
days in Narragansett Bay, Rhode	area and are within the north	reduction in vessel size also
Island (DeAlteris et al., 1999). In	eastern quarter of the harbour	restricts the type of gear that can
the same study, but in the areas of	and in an area known as Mallard	be used, with vessels often using
mud at a depth of 14 m, trawl scars	Sands, one of which occur in	lighter towed gear.
(5-10 cm deep with berms 10-20	areas of intertidal sand and	с с
cm high) persisted for more than	muddy sand.	
60 days (DeAlteris et al. 1999).		
Furrows (5 cm deep, 30-85 cm	The activity is known to	
wide) made by experimental	infrequently fringes on the	
flounder trawl doors (200 kg) in the	intertidal, with only five sightings	
Bay of Fundy were visible for at	of trawling in intertidal muddy	
least 2 to 7 months in an area of	sand and sand over 10 years	
coarse sediment overlain by up to	(2005-2015), the majority of which	
10 cm of silty sediment (Brylinsky	occur within the main fishing area	
et al. 1994).	in the centre of the harbour. The	
	activity is undertaken by a	
	relatively low number of vessels	
	and takes place during only 6	
	months of the year. The time	
	spent fishing each day is also	
	limited as trawling is undertaken	
	for purposes of bait	
	(approximately 1 kg per day) and	
	not human consumption. The	
	gear used in this fishery is	

						HRA Template v1.1
					extremely light, with otter boards	
					made of wood and the weight of	
					the gear weighing up to 65 kg for	
					larger vessels (10 m in length).	
					Based on the low fishing effort	
					(small number of boats, summer	
					monthly only, limited time spent	
					fishing), the weight of the gear	
					and infrequent occurrence over	
					intertidal sand and muddy sand,	
					the activity is unlikely to cause an	
					adverse effect on the topography.	
					The sediment type is relatively	
					coarse and therefore any changes	
					in topography are likely to recover	
					rapidly (within days). The area in	
					which trawling takes place is likely	
					to be subject to strong tidal flows	
					which occur at the entrance to the	
					harbour, thus supporting a rapid	
					physical recovery.	
Intertidal	Intertidal	Sediment	Average particle	Abrasion, penetration and	Reports of trawling with the	Bottom Towed Fishing Gear
mudflats	mud and	character	size analysis	disturbance to the surface of the	Langstone Harbour from local	byelaw prohibits bottom towed
and	sand	(Reg 33);	parameters	seabed and below the surface of	IFCOs reveal the total number of	fishing gear over sensitive
sandflats;		Sediment	should not deviate	the seabed, as well as changes in		features including seagrass within
,	(Generic); Intertidal				vessels operating within the	
Estuaries		composition	significantly from	siltation rates (for subtidal gravel	fishery is approximately 5, with 1	the Solent Maritime SAC closing
	muddy sand	and	an established	and sand) were identified as	or 2 vessels operating daily during	areas of the site to these
	communities;	distribution	baseline subject	potential pressures.	the summer (May to October).	activities. Southern IFCA is
	Intertidal	(Interim CA)	to natural change		Sightings data, provided by	currently amending this byelaw to
	sand		(Reg 33); The	Towed demersal fishing gear has	Langstone Harbour, reveal a	include an additional network of
	communities;		distribution of	been shown to alter sedimentary	relatively low level of fishing effort	permanent closures areas to
	Intertidal		sediment	characteristics and structure,	within Langstone Harbour, with an	bottom towed fishing gear. These
	mudflat &		composition types	particularly in subtidal muddy sand	average of 0.9 vessels sighted	amendments are being made as
	sandflat		across the feature	and mud habitats, as a result of	more than twice or more in a	part of a suite of new measures to
	communities		(and each of its	penetration into the sediment	month in 2014. This was the	manage shellfish dredging within
	(Reg 33);		sub-	(Jones, 1992; Gubbay & Knapman,	highest average between 2012	the Solent EMS. The network of
	Intertidal		features)(presenc	1999; Ball <i>et al.</i> 2000; Roberts <i>et</i>	and 2015, except for 2012 (1.5	new closure areas is designed to
	sand and		e/absence of	<i>al.</i> 2010). Sediment structure may	fishing vessels sighted twice or	protect good examples of low-
	muddy sand		areas mapped in	change through the resuspension	more).	energy SAC habitats, maintaining
	(Interim CA)		GIS), compared	of sediment, nutrients and		the integrity of the site, whilst also
			to an established	contaminants and relocation of	Trawling predominantly occurs	offering long-term stability to
						u u u u
			baseline, to	stones and boulders (ICES, 1992;	subtidally, occasionally fringing on	guard against the effects of

				HRA Template v1.1
en		Gubbay & Knapman, 1999).	the intertidal and is focused in the	fishing effort displacement.
		Trawling can increase the fraction	centre of the Langstone Harbour.	Additional spatial and temporal
	0,	of fine sediment on superficial	Co-location maps of trawl	restrictions of shellfish dredging
	onnectivity	layers of the seabed (Queirós et al.	sightings and site feature/sub-	within the Solent EMS include a
(In	,	2006). As fine material is	features reveals that trawling	network of three dredge
		suspended, it can be washed away	occurs primarily in areas of	management fishing areas and a
		from the surface layers (Gubbay &	subtidal sand and subtidal mixed	daily closure from 17:00 to 07:00.
		Knapman, 1999). In Estero Bay of	sediments. All sightings were	Within each dredge fishing
		the Californian coast, experimental	taken between 2005 and 2010	management area, clam dredging
		trawling using a small footrope	and no sightings were made	will be prohibited for 35 weeks of
		otter trawl (61 ft head rope, 60 ft	between 2011 and 2015.	the year during the spring,
		ground rope, 8 inch and 4 inch	Sightings which fringe on the	summer and autumn months.
		discs, 3.5 ft x 4.5 700 lbs ft trawl	intertidal generally occur in areas	, , , , <u> </u>
		doors) (Lindholm et al., 2013) led	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw
		to a slight increase in silt content	and are located within the known	prohibits commercial fishing
		and 2% decrease in the fine sand	area of fishing. Only three	vessels over 12 metres from the
		fraction, although post-trawl	sightings occur outside of this	Southern IFCA district. The
		samples displayed the same grain	area and are within the north	reduction in vessel size also
		size distribution as pre-trawl	eastern quarter of the harbour	restricts the type of gear that can
		samples (Lindholm <i>et al</i> . 2013).	and in an area known as Mallard	be used, with vessels often using
		There is limited information on	Sands, one of which occur in	lighter towed gear.
		There is limited information on	areas of intertidal sand and	
		resultant sediment plumes from	muddy sand.	
		trawling. The resuspension of sediment is known to occur	Changes in sediment character	
			occur particularly in muddy sand	
		through turbulence from trawl	and mud habitats, which are	
		doors (Main & Sangster, 1979;	sediments types unlikely to be	
		1981). Resultant sediment plumes	affected by trawling. The activity	
		from shellfish dredging can lead to	is known to infrequently fringes on	
		areas of elevated turbidity up to 30	the intertidal, with only five	
		metres beyond the dredge zone	sightings of trawling in intertidal	
		(Manning, 1957; Haven, 1979;	muddy sand and sand over 10	
		Manzi et al., 1985; Maier et al.,	years (2005-2015), the majority of	
		1998), although in most cases the	which occur within the main	
		amount of suspended sediment	fishing area in the centre of the	
		rapidly returns to low levels with	harbour. The activity is	
		distance from the dredge activity (Kyte et al., 1976; Maier et al.,	undertaken by a relatively low	
		1998) with 98% resettling within 15	number of vessels and takes	
		m (Mercaldo-Allen & Goldberg,	place during only 6 months of the	
		2011). Dispersed sediments may	year. The time spent fishing each	
		take 30 minutes to 24 hours to	day is also limited as trawling is	
		iane su minutes lu 24 mulis lu	and the aloce infinition do travining to	

						HRA Template v1.1
				resettle (Lambert & Goudreau 1996; Northeast Region EFHSC 2002). Shallow water environments with high silt and clay content are likely to experience larger plumes and greater turbidity (Ruffin 1995; Tarnowski 2006). In areas of tide and current, the effects of sediment resuspension are short in duration and the effects of redeposition are not permanently, particularly with respect to those adapted to storm events and sediment transport by currents (Jones, 1992). The physical recovery of sediments to such impacts largely depends on sediment type (Mercaldo-Allen & Goldberg, 2011). In high energy environments physical recovery in low energy areas can take months (Northeast Region EFHSC, 2002; Wallace & Hoff, 2005).	undertaken for purposes of bait (approximately 1 kg per day) and not human consumption. The gear used in this fishery is extremely light, with otter boards made of wood and the weight of the gear weighing up to 65 kg for larger vessels (10 m in length). This is likely to reduce the level of sediment resuspension. Based on the low fishing effort (small number of boats, summer monthly only, limited time spent fishing), the weight of the gear and infrequent occurrence over intertidal sand and muddy sand, the activity is unlikely to cause an adverse effect on sediment characteristics. The area within Langstone Harbour where trawling takes places are areas of relatively strong tide and current and therefore the effects of sediment resuspension on sediment character are short in duration and temporary, with such areas likely to be adapted to storm events and sediment transport by currents (Jones, 1992).	
Intertidal mudflats and sandflats; Estuaries	Intertidal mud and sand (Generic); Intertidal muddy sand communities; Intertidal sand communities; Intertidal	Range and distribution of characteristic sand and gravel biotopes (Reg 33); Presence and spatial distribution of intertidal	Range and distribution should not deviate significantly from an established baseline subject to natural change (Reg 33); The presence and spatial distribution of intertidal sand	The selection extraction of species and removal of non-target species, as well as changes in siltation rates were identified as potential pressures. In areas of gravel and sand, siltation and smothering of faunal communities is a key concern. Areas of sand and gravel are highly sensitive to siltation as the	Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These

					HRA Template v1.1
mudflat & sandflat communities (Reg 33); Intertidal sand and muddy sand (Interim CA)	sand and muddy sand communities (Interim CA); Presence and abundance of typical species (Interim CA); Species composition of component communities (Interim CA)	and muddy sand communities according to the map (Interim CA); The abundance of listed typical species, to enable each of them to be a viable component of the habitat (Interim CA); The species composition of component communities (Interim CA)	 marine communities which are sensitive to inputs of fine material (English Nature, 2001). There is limited information on resultant sediment plumes from trawling. The resuspension of sediment is known to occur through turbulence from trawl doors (Main & Sangster, 1979; 1981). Resultant sediment plumes from shellfish dredging can lead to areas of elevated turbidity up to 30 metres beyond the dredge zone (Manning, 1957; Haven, 1979; Manzi <i>et al.</i>, 1985; Maier <i>et al.</i>, 1998), although in most cases the amount of suspended sediment rapidly returns to low levels with distance from the dredge activity (Kyte <i>et al.</i>, 1976; Maier <i>et al.</i>, 1998) with 98% resettling within 15 m (Mercaldo-Allen & Goldberg, 2011). Dispersed sediments may take 30 minutes to 24 hours to resettle (Lambert & Goudreau 1996; Northeast Region EFHSC 200). Bottom towed fishing gear can result in the mortality of non-target species through direct physical damage inflicted by the passage of the trawl or indirectly through damage, exposure and subsequent predation (Roberts <i>et al.</i> 2010). This can lead to long-term changes in the benthic community structure (Jones, 1992), including decreases 	average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more). Trawling predominantly occurs subtidally, occasionally fringing on the intertidal and is focused in the centre of the Langstone Harbour. Co-location maps of trawl sightings and site feature/sub- features reveals that trawling occurs primarily in areas of subtidal sand and subtidal mixed sediments. All sightings were taken between 2005 and 2010 and no sightings were made between 2011 and 2015. Sightings which fringe on the intertidal generally occur in areas of intertidal muddy sand and sand and are located within the known area of fishing. Only three sightings occur outside of this area and are within the north eastern quarter of the harbour and in an area known as Mallard Sands, one of which occur in areas of intertidal sand and muddy sand. Within the Solent Maritime SAC, the key biotopes associated with intertidal muddy sand habitats	HRA Template v1.1 amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining the integrity of the site, whilst also offering long-term stability to guard against the effects of fishing effort displacement. Additional spatial and temporal restrictions of shellfish dredging within the Solent EMS include a network of three dredge management fishing areas and a daily closure from 17:00 to 07:00. Within each dredge fishing management area, clam dredging will be prohibited for 35 weeks of the year during the spring, summer and autumn months. Vessel Used in Fishing byelaw prohibits commercial fishing vessels over 12 metres from the Southern IFCA district. The reduction in vessel size also restricts the type of gear that can be used, with vessels often using lighter towed gear.
			damage inflicted by the passage of the trawl or indirectly through damage, exposure and subsequent predation (Roberts <i>et al.</i> 2010). This can lead to long-term changes in the benthic community structure	Sands, one of which occur in areas of intertidal sand and muddy sand. Within the Solent Maritime SAC, the key biotopes associated with	0

SIFCA Reference: SIFCA/HRA/06/004

		HRA Template v1.1
structure (Tuck et al., 1998;	Bathyporeia spp and Corophium	
Roberts <i>et al.</i> 2010).	spp in upper shore slightly muddy	
	fine sands. The specific species	
The impact of otter trawls on	mentioned above have not been	
benthic communities varies	identified as being sensitive to	
between studies, notably between	trawling disturbance in the studies	
sediment types. The initial impact	examined. Deep burrowing	
on benthic communities from otter	molluscs, such as Macoma	
trawl disturbance on mud was	balthica, are known to have	
estimated to be -29%, -15% on	limited capability to escape	
sand and +3% on gravel (Kaiser et	(Wheeler <i>et al.</i> , 2014). Generally	
<i>al.</i> , 2006; Hinz <i>et al.</i> , 2009).	speaking, experimental fishing	
Experimental fishing manipulations	manipulations have shown that	
based on sandy sediments have	impacts of trawling disturbance on	
reported mixed results. A number	annelids are limited and in some	
of studies report very little or no	instances may be positive.	
	instances may be positive.	
effect from trawling disturbance	The estimity is known to	
(Queirós <i>et al.</i> 2006; Lindholm <i>et</i>	5	
al., 2013), whilst others report		
significant reductions (Bergman &	with only five sightings of trawling	
van Santbrink, 2000; Moran &	on intertidal muddy sand and	
Stephenson, 2000; Kenchington et	sand over 10 years (2005-2015).	
al., 2001). Bergman and van	The activity is undertaken by a	
Santbrink (2000) reported direct	relatively low number of vessels	
mortality of 0-21% for bivalves, 12-	and takes place during only 6	
16% for echinoderms and 19-30%	months of the year. The time	
for crustaceans after a single	spent fishing each day is also	
sweep with a commercial otter	limited as trawling is undertaken	
trawl in sandy areas 30-40 m deep	for purposes of bait	
in the North Sea.	(approximately 1 kg per day) and	
	not human consumption. The	
Experimental fishing manipulations	gear used in this fishery is	
investigating the impacts of otter	extremely light, with otter boards	
trawling on muddy sediments	made of wood and the weight of	
report relatively modest changes in	the gear weighing up to 65 kg for	
benthic communities in the short-	larger vessels (10 m in length).	
term (Hinz et al., 2009).	Based on the low fishing effort	
Experimental trawling, with a	(small number of boats, summer	
commercial otter trawl (dimensions	monthly only, limited time spent	
unknown), over a muddy substrate	fishing), the weight of the gear	
at a depth of 30 to 40 m off the	and infrequent occurrence over	
Catalan coast in Spain reported a		
	and and build,	

	HRA Template v1.1
similar percentage abun	
most major taxa betwee	
and unfished sites (Sanch	
2000). Tuck et al.	(1998) associated with subtidal mixed
investigated the biologica	I effects sediments. Furthermore, the
of trawling disturbance	on a infrequent nature of the activity is
sheltered sealoch in Sc	otland at likely to allow sufficient time for
35-40 m depth in	n area recovery if the activity were to
characterised by 95% silt	and clay occur. Furthermore, the recovery
using modified rockhoppe	r ground periods for sand are known to be
gear without a net.	Infaunal relatively rapid (100 days) and
community structure	became therefore the infrequent nature of
significantly altered after	5 months the activity over intertidal muddy
of fishing and rema	ned so sand and sand will allow sufficient
throughout the duration	of the time for such recovery if the
experimental. No s	ignificant activity were to occur. The area in
differences in infaunal	species which trawling takes place is likely
richness however were	detected to be subject to strong tidal flows
during the first 10 m	onths of and communities within this area
trawling. After 16 mg	nths of are likely to be naturally disturbed
trawling disturbance,	and and adapted to such conditions.
throughout the recovery	period,
species richness was sig	nificantly Any impacts from siltation or
higher in the trawled	site. No sediment resuspension are likely
effects on total bioma	ss were to be very limited as the area
reported. Infaunal al	
lowered after trawling con	nmenced trawling takes places is an area of
and species diversity was	
the fished site through	out the and therefore the effects of
experiment, including	prior to sediment resuspension on
fishing. Brylinsky <i>et a</i>	(1994) sediment character are short in
reported reductions	in the duration and temporary, with such
abundance of nematodes	
effect on either the comp	osition or storm events and sediment
abundance of polychae	es after transport by currents (Jones,
experimental flounder tra	wling on 1992).
intertidal silty sediment in	
of Fundy, although the	rate of
recovery was rapid	following
trawling disturbance.	
The timescale for recove	y largely

		HRA Template v1.1
	depends on sediment type,	
	associated fauna and rate of	
	natural disturbance (Roberts et al.,	
	2010). Generally speaking, in	
	locations where natural	
	disturbance levels are high, the	
	associated fauna are characterised	
	by species adapted to withstand	
	and recover from disturbance	
	(Collie et al., 2000; Dernie et al.,	
	2003; Roberts <i>et al.</i> , 2010). In a	
	recent meta-analysis on the	
	biological impacts of different	
	fishing activities, recovery of	
	muddy sands was predicted to take	
	months to years and sand was	
	predicted to take days to months	
	(Kaiser et al., 2006). Kaiser et al.	
	(2006) reported recovery times in	
	the abundance of biota of less than	
	50 days from beam trawling in	
	highly energetic, shallow, soft-	
	sediment habitats of sand and	
	muddy sand. Collie <i>et al.</i> (2000)	
	reported recovery times of 100	
	days in sandy sediment	
	communities from trawling	
	disturbance. Tuck <i>et al.</i> (1998)	
	studied the biological effects of	
	otter trawling in a sheltered	
	sealoch in Scotland at 35-40 m	
	depth in an area characterised by	
	95% silt and clay. A similar	
	condition to the reference site was	
	reached after 18 months, with the	
	abundance of individuals shown to	
	return to similar levels recorded	
	prior to trawling (Tuck <i>et al.</i> , 1998).	
	Partial recovery of infaunal species	
	occurred after 12 months and	
	effects on epifauna were largely	
	indistinguishable from the	
L		

					HRA Template v1.1
			reference site 6 months after fishing ceased (Tuck <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002). Brylinsky <i>et al.</i> (1994) reported the a rapid recovery of nematode abundance within 4 to 6 weeks following experimental flounder trawling on intertidal silty sediments in the Bay of Fundy.		
Intertidal Intertidal mudflats mixed and sediments sandflats; (Generic & Estuaries Interim CA); Intertidal mixed sediment communities (Reg 33)	Topography	Shore profile should not deviate significantly from an established baseline subject to natural change (Reg 33); The presence of topographic features, while allowing for natural responses to hydrodynamic regime, by preventing erosion or deposition through human- induced activity (Interim CA)	Abrasion, penetration and disturbance to the surface of the seabed and below the surface of the seabed were identified as potential pressures. Otter boards leave distinct tracks on the seafloor by ploughing grooves and creating berms (sediment mounds) (Jones, 1992; Gilkinson <i>et al.</i> , 1998; Johnson <i>et al.</i> , 2002; Thursh & Dayton, 2002). Berms can be up to 20 cm high (DeAlteris <i>et al.</i> , 1999) and furrows can be up to 10 cm deep and 85 cm wide (Brylinsky <i>et al.</i> , 1994; Nilsson & Rosenberg, 2003). The area directly affected by otter boards themselves is only 1/10 of the affected trawling area. Ground ropes and weights can scour and flatten the seabed. The physical recovery of sediments to such impacts largely depends on sediment type (Mercaldo-Allen & Goldberg, 2011). In high energy environments physical recovery can take days, whereas recovery in low energy areas can take months (Northeast Region EFHSC, 2002; Wallace & Hoff, 2005). Trawl	Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more). Trawling predominantly occurs subtidally, occasionally fringing on the intertidal and is focused in the centre of the Langstone Harbour. Co-location maps of trawl sightings and site feature/sub- features reveals that trawling occurs primarily in areas of subtidal sand and subtidal mixed sediments. All sightings were taken between 2005 and 2010 and no sightings were made between 2011 and 2015. Sightings which fringe on the	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining the integrity of the site, whilst also offering long-term stability to guard against the effects of fishing effort displacement. Additional spatial and temporal restrictions of shellfish dredging within the Solent EMS include a network of three dredge management fishing areas and a daily closure from 17:00 to 07:00. Within each dredge fishing management area, clam dredging will be prohibited for 35 weeks of the year during the spring, summer and autumn months.

						HRA Template v1.1
				marks in areas of faster water	intertidal generally occur in areas	
				movement are likely to be filled in	of intertidal muddy sand and sand	Vessel Used in Fishing byelaw
				within a shorter period (Jones,	and are located within the known	prohibits commercial fishing
				1992). Hand-dug trenches (15 cm	area of fishing. Only three	vessels over 12 metres from the
				deep and 1.2 m long) at a 7 m	sightings occur outside of this	Southern IFCA district. The
				deep sandy site lasted for 1 to 4	area and are within the north	reduction in vessel size also
				days in Narragansett Bay, Rhode	eastern quarter of the harbour	restricts the type of gear that can
				Island (DeAlteris et al., 1999). In	and in an area known as Mallard	be used, with vessels often using
				the same study, but in the areas of	Sands.	lighter towed gear.
				mud at a depth of 14 m, trawl scars		
				(5-10 cm deep with berms 10-20	Existing sightings data do not	
				cm high) persisted for more than	show the activity to occur over	
				60 days (DeAlteris et al. 1999).	areas of intertidal mixed	
				Furrows (5 cm deep, 30-85 cm	sediments. The infrequent nature	
				wide) made by experimental	of this activity over the intertidal	
				flounder trawl doors (200 kg) in the	and highly patchy nature of	
				Bay of Fundy were visible for at	intertidal mixed sediments largely	
				least 2 to 7 months in an area of	eliminates any interaction with the	
				coarse sediment overlain by up to	activity and the possibility of any	
				10 cm of silty sediment (Brylinsky	adverse effect.	
				<i>et al.</i> 1994).		
Intertidal	Intertidal	Sediment	Average particle	Abrasion, penetration and	Reports of trawling with the	
mudflats	mixed	character	size analysis	disturbance to the surface of the seabed and below the surface of	Langstone Harbour from local IFCOs reveal the total number of	
and sandflats;	sediments	(Reg 33); Sediment	parameters should not deviate	the seabed, as well as changes in	vessels operating within the	fishing gear over sensitive features including seagrass within
Estuaries	(Generic & Interim CA);	composition	significantly from	siltation rates (for subtidal gravel	fishery is approximately 5, with 1	the Solent Maritime SAC closing
Estuaries	Intertidal	and	an established	and sand) were identified as	or 2 vessels operating daily during	areas of the site to these
	mixed	distribution	baseline subject	potential pressures.	the summer (May to October).	activities.
	sediment	(Interim CA)	to natural change	potential pressures.	Sightings data, provided by	activities.
	communities	(Interim CA)	(Reg 33); The	Towed demersal fishing gear has	Langstone Harbour, reveal a	Vessel Used in Fishing byelaw
	(Reg 33)		distribution of	been shown to alter sedimentary	relatively low level of fishing effort	prohibits commercial fishing
	(IVEG 55)		sediment	characteristics and structure,	within Langstone Harbour, with an	vessels over 12 metres from the
			composition types	particularly in subtidal muddy sand	average of 0.9 vessels sighted	Southern IFCA district. The
			across the feature	and mud habitats, as a result of	more than twice or more in a	reduction in vessel size also
			(and each of its	penetration into the sediment	month in 2014. This was the	restricts the type of gear that can
			sub-	(Jones, 1992; Gubbay & Knapman,	highest average between 2012	be used, with vessels often using
			features)(presenc	1999; Ball <i>et al.</i> 2000; Roberts <i>et</i>	and 2015, except for 2012 (1.5	lighter towed gear.
			e/absence of	<i>al.</i> 2010). Sediment structure may	fishing vessels sighted twice or	ignor tonou gour.
			areas mapped in	change through the resuspension	more).	
			GIS), compared	of sediment, nutrients and		
			to an established	contaminants and relocation of	Trawling predominantly occurs	
			baseline, to	stones and boulders (ICES, 1992;	0 1	
μ				310103 and Doulders (IOLO, 1992,	Subtraily, occasionally minging on	

					HRA Template v1.1
		structural habitat	Gubbay & Knapman, 1999). Trawling can increase the fraction	the intertidal and is focused in the centre of the Langstone Harbour.	
		integrity and	· · · · · · · · · · · · · · · · · · ·	Co-location maps of trawl	
		connectivity	layers of the seabed (Queirós et al.	sightings and site feature/sub-	
		(Interim CA)	2006). As fine material is	features reveals that trawling	
			suspended, it can be washed away	occurs primarily in areas of	
			from the surface layers (Gubbay &	subtidal sand and subtidal mixed	
			Knapman, 1999). In Estero Bay of	sediments. All sightings were	
			the Californian coast, experimental	taken between 2005 and 2010	
			trawling using a small footrope	and no sightings were made	
			otter trawl (61 ft head rope, 60 ft	between 2011 and 2015.	
			ground rope, 8 inch and 4 inch	Sightings which fringe on the	
			discs, 3.5 ft x 4.5 700 lbs ft trawl	intertidal generally occur in areas	
			doors) (Lindholm et al., 2013) led	of intertidal muddy sand and sand	
			to a slight increase in silt content	and are located within the known	
			and 2% decrease in the fine sand	area of fishing. Only three	
			fraction, although post-trawl	sightings occur outside of this	
			samples displayed the same grain	area and are within the north	
			size distribution as pre-trawl	eastern quarter of the harbour	
			samples (Lindholm <i>et al</i> . 2013).	and in an area known as Mallard	
				Sands.	
			There is limited information on		
			resultant sediment plumes from	Existing sightings data do not	
			trawling. The resuspension of	show the activity to occur over	
			sediment is known to occur	areas of intertidal mixed	
			through turbulence from trawl	sediments. The infrequent nature	
			doors (Main & Sangster, 1979;	of this activity over the intertidal	
			1981). Resultant sediment plumes	and highly patchy nature of	
			from shellfish dredging can lead to	intertidal mixed sediments largely	
			areas of elevated turbidity up to 30	eliminates any interaction with the	
			metres beyond the dredge zone	activity and the possibility of any	
			(Manning, 1957; Haven, 1979;	adverse effect.	
			Manzi et al., 1985; Maier et al.,		
			1998), although in most cases the		
			amount of suspended sediment		
			rapidly returns to low levels with		
			distance from the dredge activity		
			(Kyte et al., 1976; Maier et al.,		
			1998) with 98% resettling within 15		
			m (Mercaldo-Allen & Goldberg,		
			2011). Dispersed sediments may		
			take 30 minutes to 24 hours to		
L	I	1		ι	1

						HRA Template v1.1
				resettle (Lambert & Goudreau 1996; Northeast Region EFHSC 2002). Shallow water environments with high silt and clay content are likely to experience larger plumes and greater turbidity (Ruffin 1995; Tarnowski 2006). In areas of tide and current, the effects of sediment resuspension are short in duration and the effects of redeposition are not permanently, particularly with respect to those adapted to storm events and sediment transport by currents (Jones, 1992). The physical recovery of sediments to such impacts largely depends on sediment type (Mercaldo-Allen & Goldberg, 2011). In high energy environments physical recovery can take days, whereas recovery in low energy areas can take months		
Intertidal mudflats and sandflats; Estuaries	Intertidal mixed sediments (Generic & Interim CA); Intertidal mixed sediment communities (Reg 33)	Range and distribution of characteristic intertidal mixed sediment biotopes (Reg 33); Presence and spatial distribution of intertidal mixed sediment communities (Interim CA); Presence and	Range and distribution should not deviate significantly from an established baseline subject to natural change (Reg 33); The presence and spatial distribution of intertidal mixed sediment communities according to the map (Interim CA); The abundance of listed typical species, to enable	 (Northeast Region EFHSC, 2002; Wallace & Hoff, 2005). The selection extraction of species and removal of non-target species, as well as changes in siltation rates were identified as potential pressures. In areas of gravel and sand, siltation and smothering of faunal communities is a key concern. Areas of sand and gravel are highly sensitive to siltation as the marine communities which are sensitive to inputs of fine material (English Nature, 2001). There is limited information on resultant sediment plumes from trawling. The resuspension of sediment is known to occur through turbulence 	Reports of trawling with the Langstone Harbour from local IFCOs reveal the total number of vessels operating within the fishery is approximately 5, with 1 or 2 vessels operating daily during the summer (May to October). Sightings data, provided by Langstone Harbour, reveal a relatively low level of fishing effort within Langstone Harbour, with an average of 0.9 vessels sighted more than twice or more in a month in 2014. This was the highest average between 2012 and 2015, except for 2012 (1.5 fishing vessels sighted twice or more).	Bottom Towed Fishing Gear byelaw prohibits bottom towed fishing gear over sensitive features including seagrass within the Solent Maritime SAC closing areas of the site to these activities. Southern IFCA is currently amending this byelaw to include an additional network of permanent closures areas to bottom towed fishing gear. These amendments are being made as part of a suite of new measures to manage shellfish dredging within the Solent EMS. The network of new closure areas is designed to protect good examples of low- energy SAC habitats, maintaining

				HRA Template v1.1
of typical b species ((Interim CA); b Species (composition of of component of	each of them to be a viable component of the habitat (Interim CA); The species component communities (Interim CA)	from trawl doors (Main & Sangster, 1979; 1981). Resultant sediment plumes from shellfish dredging can lead to areas of elevated turbidity up to 30 metres beyond the dredge zone (Manning, 1957; Haven, 1979; Manzi <i>et al.</i> , 1985; Maier <i>et al.</i> , 1998), although in most cases the amount of suspended sediment rapidly returns to low levels with distance from the dredge activity (Kyte <i>et al.</i> , 1976; Maier <i>et al.</i> , 1998) with 98% resettling within 15 m (Mercaldo-Allen & Goldberg, 2011). Dispersed sediments may take 30 minutes to 24 hours to resettle (Lambert & Goudreau 1996; Northeast Region EFHSC 200). Bottom towed fishing gear can result in the mortality of non-target species through direct physical damage inflicted by the passage of the trawl or indirectly through damage, exposure and subsequent predation (Roberts <i>et al.</i> 2010). This can lead to long-term changes in the benthic community structure (Jones, 1992), including decreases in biomass, species richness, production, diversity, evenness (as a result of increased dominance) and alterations to species composition and community structure (Tuck <i>et al.</i> , 1998; Roberts <i>et al.</i> 2010). The impact of otter trawls on benthic communities varies between studies, notably between sediment types. The initial impact	Trawling predominantly occurs subtidally, occasionally fringing on the intertidal and is focused in the centre of the Langstone Harbour. Co-location maps of trawl sightings and site feature/sub- features reveals that trawling occurs primarily in areas of subtidal sand and subtidal mixed sediments. All sightings were taken between 2005 and 2010 and no sightings were made between 2011 and 2015. Sightings which fringe on the intertidal generally occur in areas of intertidal muddy sand and sand and are located within the known area of fishing. Only three sightings occur outside of this area and are within the north eastern quarter of the harbour and in an area known as Mallard Sands. Existing sightings data do not show the activity to occur over areas of intertidal mixed sediments. The infrequent nature of this activity over the intertidal and highly patchy nature of intertidal mixed sediments largely eliminates any interaction with the activity and the possibility of any adverse effect.	HRA Template v1.1 the integrity of the site, whilst also offering long-term stability to guard against the effects of fishing effort displacement. Additional spatial and temporal restrictions of shellfish dredging within the Solent EMS include a network of three dredge management fishing areas and a daily closure from 17:00 to 07:00. Within each dredge fishing management area, clam dredging will be prohibited for 35 weeks of the year during the spring, summer and autumn months. Vessel Used in Fishing byelaw prohibits commercial fishing vessels over 12 metres from the Southern IFCA district. The reduction in vessel size also restricts the type of gear that can be used, with vessels often using lighter towed gear.

		HRA Template V1.1
	on benthic communities from otter	
	trawl disturbance on mud was	
	estimated to be -29%, -15% on	
	sand and +3% on gravel (Kaiser et	
	<i>al.</i> , 2006; Hinz <i>et al.</i> , 2009).	
	Experimental fishing manipulations	
	based on sandy sediments have	
	reported mixed results. A number	
	of studies report very little or no	
	effect from trawling disturbance	
	(Queirós et al. 2006; Lindholm et	
	al., 2013), whilst others report	
	significant reductions (Bergman &	
	van Santbrink, 2000; Moran &	
	Stephenson, 2000; Kenchington et	
	al., 2001). Bergman and van	
	Santbrink (2000) reported direct	
	mortality of 0-21% for bivalves, 12-	
	16% for echinoderms and 19-30%	
	for crustaceans after a single	
	sweep with a commercial otter	
	trawl in sandy areas 30-40 m deep	
	in the North Sea.	
	in the North Sea.	
	Evenerimental fishing manipulations	
	Experimental fishing manipulations	
	investigating the impacts of otter	
	trawling on muddy sediments	
	report relatively modest changes in	
	benthic communities in the short-	
	term (Hinz <i>et al.</i> , 2009).	
	Experimental trawling, with a	
	commercial otter trawl (dimensions	
	unknown), over a muddy substrate	
	at a depth of 30 to 40 m off the	
	Catalan coast in Spain reported a	
	similar percentage abundance of	
	most major taxa between fished	
	and unfished sites (Sanchez et al.,	
	2000). Tuck <i>et al.</i> (1998)	
	investigated the biological effects	
	of trawling disturbance on a	
	5	
	sheltered sealoch in Scotland at	

		HRA Template v1.1
	35-40 m depth in an area	
	characterised by 95% silt and clay	
	using modified rockhopper ground	
	gear without a net. Infaunal	
	community structure became	
	significantly altered after 5 months	
	of fishing and remained so	
	throughout the duration of the	
	experimental. No significant	
	differences in infaunal species	
	richness however were detected	
	during the first 10 months of	
	trawling. After 16 months of	
	trawling disturbance, and	
	throughout the recovery period,	
	species richness was significantly	
	higher in the trawled site. No	
	effects on total biomass were	
	reported. Infaunal abundance	
	lowered after trawling commenced	
	and species diversity was lower in	
	the fished site throughout the	
	experiment, including prior to	
	fishing. Brylinsky <i>et al</i> . (1994)	
	reported reductions in the	
	abundance of nematodes and no	
	effect on either the composition or	
	abundance of polychaetes after	
	experimental flounder trawling on	
	intertidal silty sediment in the Bay	
	of Fundy, although the rate of	
	nematode recovery was rapid	
	following trawling disturbance.	
	The timescale for recovery largely	
	depends on sediment type,	
	associated fauna and rate of	
	natural disturbance (Roberts et al.,	
	2010). Generally speaking, in	
	locations where natural	
	disturbance levels are high, the	
	associated fauna are characterised	

	HRA Template v1.1
by species ac	lapted to withstand
and recover	from disturbance
	2000; Dernie <i>et al.</i> ,
	<i>et al.</i> , 2010). In a
	analysis on the
	pacts of different
	ties, recovery of
	vas predicted to take
	ars and sand was
	ake days to months
	2006). Kaiser et al.
	d recovery times in
	of biota of less than
	beam trawling in
	tic, shallow, soft-
	itats of sand and
	Collie et al. (2000)
	very times of 100
	sandy sediment
communities	from trawling
	Fuck $et al.$ (1998)
	iological effects of
	in a sheltered
	cotland at 35-40 m
	ea characterised by
	d clay. A similar
	e reference site was
	18 months, with the
	individuals shown to
	lar levels recorded
	g (Tuck <i>et al.</i> , 1998). y of infaunal species
	r 12 months and
	fauna were largely
indistinguishab	
	e 6 months after
	(Tuck <i>et al.</i> , 1998;
	, 2002). Brylinsky <i>et</i>
	ported the a rapid
	ematode abundance
	6 weeks following
experimental f	lounder trawling on

		HRA Template v1.
	intertidal silty sediments in the Bay	
	of Fundy.	

7. Conclusion¹⁶

Research into the impacts of trawling reveals that the activity has the potential to cause physical and biological disturbance. However, the extent of the impact largely depends on sediment type and physical regime within the area considered. In areas subject to dynamic physical regimes with coarser sediments, evidence of impacts from trawling are either undetectable or negligible and short-lived. Unfortunately, no studies were found on the impacts of trawling with gear similar to that used for sandeel trawling. The studies mentioned in this report use gear much heavier than that used in sandeel trawling which is extremely light in comparison.

Using Southern IFCA sightings data and feature mapping data (provided by Natural England), light otter trawling for sandeels is shown to occur within Langstone Harbour which forms part of the Solent Maritime SAC. The sightings show the activity is concentrated subtidally within a small area in the centre of the harbour where the main channel splits into the Broom Channel and Langstone Channel, south of Sword Sands. Within this area, the sediment type consists of subtidal mixed sediment and subtidal sand. These subtidal sediment types form part of the Estuaries interest feature, under which topography and sediment character are not considered as attributes.

Having reviewed a wide range of evidence, including expert opinion, scientific literature, sightings data and feature mapping, it has been concluded that light otter trawling for sandeels, which occurs within Langstone Harbour, is unlikely to have a significant adverse effect on the sub features that occur under the 'Estuaries' interest feature. The level of light otter trawling for sandeels within Langstone Harbour is relatively low. Fishing occurs for 6 months of the year by up to 5 boats which fish for limited periods of time (1 to 2 hours in the morning). A limited time is spent fishing as light otter trawling for sandeels is undertaken for bait purposes and therefore only small quantities (up to 1 kg) are required. Tows are also short due to a spatial constraints which dictated by the nature of the area fished. The gear used is extremely light and is hand hauled, with gear weighing between 40 kg for smaller boats (approximately 8 m) and up to 65 kg for larger boats (up to 10 m). The limits the level of potential damage caused by the gear. The area in which the activity does occur within the site is relatively physically dynamic area, characterised by strong tidal flows and therefore are likely to support faunal communities which are adapted to highly disturbed conditions. Experimental fishing manipulations suggest that recovery from any trawling impacts within these areas is likely to be rapid, with physical recovery taking up to 4 days in sandy habitats and biological recovery estimated to take up to 100 days, although it is likely to be less. The nature of the fishery, which only takes place during the summer months, would therefore allow for any recovery if necessary.

Based on the number of boats involved; the temporal nature of the fishery; the limited periods spent fishing; weight of the gear; and limited potential to cause adverse effect on the sediment types over which it occurs, it is deemed that trawling using a light otter trawl for sandeels within Langstone Harbour in the Solent Maritime SAC is unlikely to have an adverse effect on the features considered and will not hinder the site from achieving its conservation objectives. It is Southern IFCA's duty as the competent and relevant authority to manage damaging activities that may affect site integrity and lead to deterioration of the site. The levels and location of the activity considered is such that it is not believed to lead to the deterioration of the site and that it is compatible with the sites conservation objectives.

In order to ensure that the management of trawling remains consistent with the conservation objectives of the site, Southern IFCA will continue to monitor fishing effort through sightings data and information from IFCOs. In the short term a change in the status of the fishery is unforeseen, however it is recognised that the status of a fishery may change. On this basis, the management

¹⁶ If conclusion of adverse effect alone an in-combination assessment is not required.

of trawling will be reviewed as appropriate should new evidence on activity levels and/or gearhabitat interaction become available.

8. In-combination assessment

No adverse effect on the intertidal or subtidal sediment feature/sub-features of the Solent Maritime SAC was concluded for the effect of light otter trawling for sandeels alone within the SAC. Light otter trawling for sandeels currently occur in the Solent Maritime SAC alongside other fishing activities and commercials plans and projects and therefore require an in-combination assessment.

Commercial plans and projects that occur within or may affect the Solent Maritime SAC are considered in section 8.1. The impacts of these plans or projects require a Habitats Regulations Assessment in their own right, accounting for any in-combination effects, alongside existing fisheries activities.

There is the potential for light otter trawling for sandeels activity to have a likely significant effect when considered in-combination with other fishing activities that occur within the site. These are outlined in section 8.2. Any fishing activities that were screened out as part of the revised approach assessment process will not be considered (see Solent Maritime SAC screening summary for details of these activities). In the Solent Maritime SAC, commercially licensed fishing vessels are known to utilise a number of different gear types and can be engaged in multiple fishing activities and this, whilst dividing effort between gear types, may lead to cumulative impacts different to those of a single fishing activity.

Project details	Status	Potential for in-combination effect
Kendall Wharf extension	In planning	Relevant impact pathways identified in relation to this project include loss of intertidal habitat and increase in suspended sediment concentrations.
		Loss of intertidal habitat – As part of this project, the total area subject to capital dredging is expected to be 0.33 ha. Following dredging, 0.073 ha of intertidal mudflat would be removed. The total intertidal area lost or altered is 0.148 ha which equates to 0.01% of the total intertidal habitat in Langstone Harbour. The impact significance of intertidal habitat loss was concluded to be minor ¹⁷ .
		Increase in suspended sediment concentrations – It is estimated that during capital dredge operations suspended sediment concentrations could reach a maximum of 196 mg/l. Naturally occurring suspended sediment concentrations reach up to 200 mg/l within Langstone Harbour. The impact significance of

8.1 Other plans and project

¹⁷ When an effect will be experienced but the effect magnitude is sufficiently small and well within accepted standards and/or receptor is of low sensitivity.

		HRA Template v1.1
		increases in suspended sediment concentration was concluded to be not significant ¹⁸ . In addition, a backhoe dredger will be used to minimise sediments suspended.
		At a tLSE level for light otter trawling for sandeels, physical damage from siltation and abrasion were screened in but it was recognised that the activity causes disturbance to the seabed but does result not in the physical loss of the extent of the feature. Common impact pathways with the project therefore include an increase in suspended sediment concentrations. The level of increase in suspended sediment concentrations associated with the project have been shown to be at the same magnitude as those which occur naturally and are likely to far exceed those caused by light otter trawling. The resuspension of sediment is known to occur through turbulence from trawl doors (Main & Sangster, 1979; 1981). Studies on shellfish dredging have reported suspended sediment rapidly returns to low levels with distance from the dredge activity (Kyte <i>et al.</i> , 1976; Mairer <i>et al.</i> , 1998), with 98% resettling within 15 m (Mercaldo-Allen & Goldberg, 2011).
		The project and its relevant impact pathways were considered from not significant to negligible and are likely to be of small scale and localised in their nature. The impact pathways include the loss of intertidal, which does not overlap with impact pathways of light otter trawling for sandeels. Furthermore, light otter trawling is largely concentrated within the subtidal zone, occasionally fringing on intertidal areas, thus limiting the potential or in-combination effects due to a lack of spatial overlap. Based on the limited significance and small scale of the project impact pathways and lack of overlapping impact pathways with light otter trawling for sandeels, it is unlikely the project and activity will lead to in-combination effects.
Queen Elizabeth aircraft carrier capital dredge	Consented and underway	Relevant impact pathways identified in relation to the project include an increase in suspended sediment concentrations and increase in sedimentation rates (as identified by the appropriate assessment).
		The capital dredging operation in Portsmouth Harbour and approach channel will result in resuspension of sediment into the water column and potentially result in smothering of sensitive habitats. A likely significant effect on the Solent Maritime SAC

¹⁸ An impact that, after assessment, was found not to be significant in the context of the environmental statement objectives.

	1	HRA Template v1.1
		was concluded for the estuaries, mudflats and
		sandflats, Salicornia and sandbanks features for
		project element and associated impact pathways.
		Modelling of suspended sediment concentrations
		found changes would be temporary and largely
		confined to the area of the approach channel and
		Harbour, with levels reducing significantly to the west
		of the channel due to mixing and dispersal and any
		redeposition of sediment would be concentrated with
		the immediate vicinity. Generally coastal waters
		would be unaffected by significant increases in
		suspended sediment concentrations above natural
		background levels and the concentration of
		suspended sediments was shown to cease after 7
		days post dredging. Modelling also concluded that
		predicted sediment accumulations will be confined to
		a number of small areas away from the intertidal area
		within Portsmouth Harbour. A more detailed
		appropriate assessment concluded the approach
		channel dredge would not result in an adverse effect
		on the integrity of the site, with no direct implications
		anticipated for designated features.
		At a tLSE level for light otter trawling for sandeels,
		physical damage from siltation was screened in. The
		resuspension of sediment is known to occur through
		turbulence from trawl doors (Main & Sangster, 1979;
		1981). Studies on shellfish dredging have reported
		suspended sediment rapidly returns to low levels with
		distance from the dredge activity (Kyte <i>et al.</i> , 1976;
		Mairer <i>et al.</i> , 1998), with 98% resettling within 15 m
		(Mercaldo-Allen & Goldberg, 2011). When this is
		combined with the very low levels of suspended
		sediments and lack of impact thought to occur as a
		result of the project, it is unlikely that there will be in-
Devel Disambasa 0		combination effects.
Royal Pier phase 2	In planning	Light otter trawling for sandeels only takes place in
reclamation and capital		Langstone Harbour, therefore there is no spatial
dredge		overlap with this plan/project and as such there will
Denteh ester te Europeit		be no in-combination effects.
Portchester to Emsworth	In planning	Relevant impact pathways identified in relation to the
Coastal Defence		project include the loss of intertidal habitat.
Strategy		
		The Portsea Island Coastal Strategy Study [PICSS]
		was approved in 2011 and covers the whole of
		Portsea Island. The strategy confirms the North
		Solent Shoreline Management Plan [SMP] policy
		(2010) for Portsea Island of 'Hold the Line' and splits
		Portsea Island into 7 discrete flood cells. Under the
		North Portsea Island scheme, covering 8.4 km of
		coastline from Tipner through to Milton, works have
		been identified including raising of seawalls and
		improving seawalls structural integrity. These
HRA Template v1.1		
--		
proposed works are planned over the first ten years and these follow a phased approach, including Phase 1, Ports Creek Railways Bridge to Kendall's Wharf Northern Boundary, and Phase 2, Milton Common and Great Salterns Quay. Coastal squeeze loss of 11.69 ha of intertidal will be caused by sea level rise and the delivery of the delivery of the strategic policy option of 'Hold the Line'. An appropriate assessment concluded that because of the calculated coastal squeeze losses, that implementation of the strategy would have an adverse effect on designated sites. The AA however also concluded there is justification for these adverse effects as there is no alterative policy and there is an over-riding public need to protect life and property and so an Imperative Reasons of Overriding Public Interest statement was made. Environmental compensation will be achieved through the Regional Habitat Creation Programme which promotes the realignment of defences elsewhere in the Solent to create new intertidal habitats. This was signed off by Defra in April 2011.		
The phases that are currently underway or in planning have a small working footprint during their construction which is strictly controlled by a Construction and Environment Management Plan. Direct disturbance to the sediment is minimal and in discrete locations at any one time. For phase 1 there was an access footprint of 15m and in phase 2 a maximum access footprint of 10 m along the Milton Common Frontage and 20 m around Great Salterns Quay. No LSE is expected as any disturbance to discrete working areas is minimal, temporary and must follow good working practices as outlined in the Construction and Environment Management Plan. Phase 2 works will lead to the gain of 2,460m ² mudflat habitat within Langstone Harbour from the removal of Great Salterns Quay.		
At a tLSE level for light otter trawling for sandeels, physical damage from siltation and abrasion were screened in but it was recognised that the activity may cause disturbance to the seabed but does not result in the physical loss of the extent of the feature.		
The combined impacts of phased small scale coastal defence works and light otter trawling for sandeels will not lead to in-combination effects due to the small scale and localised nature of the impacts, a lack of overlapping impact pathways and spatial interaction. The general loss of intertidal from the overall strategy has been signed off by Defra under		

		an Imperative Reasons of Overriding Public Interest		
		statement.		
Wightlink – Fishbourne to Portsmouth	In planning	Light otter trawling for sandeels only takes place in Langstone Harbour, therefore there is no spatial overlap with this plan/project and as such there will be no in-combination effects.		
Cowes breakwater (Shrape extension), marine and capital dredge	In planning	Light otter trawling for sandeels only takes place in Langstone Harbour, therefore there is no spatial overlap with this plan/project and as such there will be no in-combination effects.		
IFA2 Cable	In planning	Light otter trawling for sandeels only takes place in Langstone Harbour, therefore there is no spatial overlap with this plan/project and as such there will be no in-combination effects.		

8.2 Other fishing activities

Fishing activity	Potential for in-combination effect
Clam dredging	Common impact pathways identified at a tLSE level and these include physical damage – siltation, physical damage – abrasion and selective extraction of species. The two activities target different species and therefore there will be no in-combination effects with respect to selective extraction of species.
	Clam dredging is often focused in areas on softer sediment in distinct, small spatial areas where shellfish beds exist. These largely include the north eastern quarter of Langstone Harbour. These sites occur intertidally (fished at high tide) and subtidally, with vessels often operating in very shallow waters.
	Sightings data presented in Annex 6 (indicative of recent fishing activity) reveal there is no spatial overlap between the two activities and therefore there are likely to be no in-combination effects for any of the impact pathways identified.
Trawling (beam trawl & light otter trawl)	Common impact pathways identified at a tLSE level and these include physical damage – siltation, physical damage – abrasion and selective extraction of species. The two activities target different species and therefore there will be no in-combination effects with respect to selective extraction of species.
	Trawling is generally focused subtidally in the central and eastern Solent, occurring at lower levels in the western Solent. The level of trawling occurring within the SAC is limited and sightings data shows it occurs on an infrequent basis. Light otter trawling for sandeels occurs in only area of Langstone Harbour, known as Sword Sands. There is no spatial overlap between the two activities and therefore there are likely to be no in-combination effects for any of the impact pathways identified.
Oyster dredging	Common impact pathways identified at a tLSE level and these include physical damage – siltation, physical damage – abrasion and selective extraction of species. The two activities target different species and therefore there will be no in-combination effects with respect to selective extraction of species.

	Oyster dredging is concentrated takes place in distinct, small spatial areas where shellfish beds exist. In Langstone Harbour activity is concentrated in the north eastern quarter and centrally in an area known as Sword Sands. Sightings data, indicative of recent fishing activity and presented in Annex 6, does not show this latter area. This is however likely to overlap with the area used for light otter trawling for sandeels as this is concentrated in the centre of the harbour. Activities are however separated temporally, with oyster dredging taking place in November (since the 2013/14 season) and light otter trawling takes place during the summer months (May to October). The area in which the activities may potentially overlap is an area characterised by coarse sediment and subject to dynamic physical regimes. In these types of environments there is a high rate of natural disturbance and evidence of impacts from trawling are either undetectable or negligible and short-lived. Fishing effort for both activities in this area is also known to be relatively low, with up to 5 vessels light otter trawling for sandeels for 1 to 2 hours a day and a lack of sightings for oyster dredging in this area in recent years. Based on the level of fishing effort and nature of the area fished (highly disturbed with rapid recovery rates), it is unlikely that the two activities will lead to incombination effects.
Demersal netting	No impact pathways were identified at a tLSE level for demersal netting. The activity is low impact and unlikely to lead to any in-combination effects. In addition, static gear types such as netting and mobile gear types such as oyster dredging are not compatible and often occur in different areas, thus largely eliminating any spatial overlap between the two activities.
Demersal longlining	No impact pathways were identified at a tLSE level for demersal longlining. The activity is low impact and unlikely to lead to any in-combination effects. In addition, static gear types such as longlining and mobile gear types such as oyster dredging are not compatible and often occur in different areas, thus largely eliminating any spatial overlap between the two activities.
Potting	No impact pathways were identified at a tLSE level for potting within the Solent Maritime SAC. The activity is low impact and unlikely to lead to any in- combination effects. In addition, static gear types such as potting and mobile gear types such as oyster dredging are not compatible and often occur in different areas, thus largely eliminating any spatial overlap between the two activities.

9. Summary of consultation with Natural England

Consultation	Date submitted	Response from NE	Date received
First draft (v1.0)	08/02/2016	Recommended amendments	30/03/2016
Revised draft in response to NE recommendations (v1.3)	21/04/2016	Accepted amendments	12/05/2016

10. Integrity test

It can be concluded that the activity in this Habitats Regulations Assessment (light otter trawling for sandeels), alone or in-combination, does not adversely affect the designated Estuaries and Mudflats and sandflats not covered by seawater at low tide features/ sub-features of the Solent Maritime SAC and that future activity, if it remains similar to current levels, will not foreseeably

have an adverse effect on the Estuaries and Mudflats and sandflats not covered by seawater at low tide features/ sub-features of the SAC. The mitigation measures detailed in table 8 are therefore considered sufficient.

Annex 1: Reference list

Ball, B., Munday, B., & Tuck, I.D. 2000. Effects of otter trawling on the benthos and environment in muddy sediments. In Kaiser, M.J. & de Groot, S.J. (Eds). *The Effects of Fishing on Non-target Species and Habitats*. Blackwell Science. pp. 69-82

Bergman, M.J.N, Fonds, M., Hup, M. & Stam, A. 1990. Direct effects of beam trawl fishing on benthic fauna in the North Sea. ICES C.M. 1990/MINI:11.

Bergman, M.J.N. & van Santbrink, J.W. 2000. Mortality in megafaunal benthic populations caused by trawl fisheries on the Dutch continental shelf in the North Sea in 1994. *ICES J. Mar. Sci.*, **57**, 1321-1331.

Bergman, M.J.N., & Hup, M. 1992. Direct effects of beam trawling on macrofauna in a sandy sediment in the southern North Sea. *ICES J. Mar. Sci.*, **49**, 5-11.

Bolam, S.G., Coggan, R.C., Eggleton, J., Diesing, M. & Stephens, D. 2014. Sensitivity of microbenthic secondary production to trawling in the English sector of the Greater North Sea: A biological trait approach. *J. Sea Res.*, **85**, 162-177.

Bridger, J. P. 1972. Some observations on the penetration into the sea bed of tickler chains on a beam trawl. ICES CM 1972/B:7, 9 pp.

Brylinsky, M., Gibson, J. & Gordon, D.C. 1994. Impacts of flounder trawls on the intertidal habitat and community of the Minas Basin, Bay of Fundy. *Can. J. Fish Aquat. Sci.*, **51**, 650-61.

Callaway, R., Engelhard, G.H., Dann, J., Cotter, J. & Rumohr, H. 2007. A century of North Sea epibenthos and trawling: comparison between 1902–1912, 1982–1985 and 2000. *Mar. Ecol. Prog. Ser.*, **346**, 27-43.

Coen, L.D. 1995. A review of the potential impacts of mechanical harvesting on subtidal and intertidal shellfish resources. SCDNR-MRRI, 46 pp.

Collie, J.S., Hall, S.J., Kaiser, M.J. & Poiner, I.R. 2000. A quantitative analysis of fishing impacts on shelf-sea benthos. *J. Anim. Ecol.*, **69**, 785-798.

de Groot, S.J. & Lindeboom, H.J. 1994. Environmental impact of bottom gears on benthic fauna in relation to natural resources management and protection of the North Sea. Texel, Netherlands. Netherlands Institute for Sea Research.

DeAlteris, J., Skrobe, L. & Lipsky, C. 1999. The significance of seabed disturbance by mobile fishing gear relative to natural processes: a case study in Narragansett Bay, Rhode Island. In Benaka, L (Ed). *Fish habitat: essential fish habitat and rehabilitation*. American Fisheries Society, Symposium 22, Bethesda, Maryland, pp. 224-237

Depestele, J., Courtens, W., Degraer, S., Haelters, J., Hostens, K., Houziaux, J.S., Merckz, B., Polet, H., Rabaut, M., Stienen, E.W.M., Vandendriessche, S., Verfaillie, E. & Vincx, M. 2012. An integrated impact assessment of trammel net and beam trawl fisheries "WAKO II" - Final Report. Project SD/NS/O8A. Brussels: Belgian Science Policy Office. 234 pp.

Dernie, K.M., Kaiser, M.J. & Warwick, R.M. 2003. Recovery rates of benthic communities following physical disturbance. *J. Anim. Ecol.*, **72**, 1043-1056.

Drabsch, S. L., Tanner, J. E. & Connell, S. D. 2001. Limited infaunal response to experimental trawling in previously untrawled areas. *ICES J. Mar. Sci.*, **58**, 6, 161.

Engel, J. & Kvitek, R. 1998. Effects of otter trawling on benthic community in Monterey Bay National Marine Sanctuary. *Cons. Biol.*, **12**, 6, 1204-214.

Foden, J., Rogers, S.I. & Jones, A.P. 2010. Recovery of UK seabed habitats from benthic fishing and aggregate extraction – towards a cumulative impact assessment. *Mar. Ecol. Prog. Ser.*, **411**, 259-270.

Fonteyne, R. 2000. Physical impact of beam trawls on seabed sediments. In Kaiser, M.J. & de Groot, S.J. (Eds). *The Effects of Fishing on Non-target Species and Habitat*. Blackwell Science. pp. 15-36

Freeman, S. M., Richardson, C.A. & Seed, R. 2001. Seasonal abundance, spatial distribution, spawning and growth of *Astropecten irregularis* (Echinodermata: Asteroidea). *Estuar. Coast. Shelf. Sci.*, **53**, 39–49.

Gilkinson, K.D., Gordon, Jr D.C., MacIsaac, K.G., McKeown, D.L., Kenchington, E.L.R., Bourbonnais, C. & Vass, W.P. 2005. Immediate impacts and recovery trajectories of macrofaunal communities following hydraulic clam dredging on Banquereau, eastern Canada. *ICES J. Mar. Sci.*, **62**, 925–947

Gilkinson, K., Paulin, M., Hurley, S. & Schwinghamer, P. 1998. Impacts of trawl door scouring on infaunal bivalves: results of a physical trawl door model/dense sand interaction. *J.Exp.Mar.Biol.* & *Ecol.*, **224**, 291-312.

Goodchild, R., Brutto, D., Snaith, E., Frost, N., Kaiser, M. & Salmon, P. 2015. Analysis of existing data to study effects of towed fishing gears on mobile sediments against a background of natural variability. Funded by Department for Environment, Food and Rural Affairs (Defra). 65 pp.

Goss-Custard, J.D. 1977. The ecology of the Wash. III. Density-related behaviour and the possible effects of a loss of feeding grounds on wading birds (Charadrii). *J. Anim. Ecol.*, **14**, 721-739.

Grieve, C., Brady, D.C. & Polet, H. 2014. Best practices for managing, measuring and mitigating the benthic impacts of fishing – Part 1. *Marine Stewardship Council Science Series*, 2, 18 – 88.

Groot S.J. de. 1995. On the penetration of the beam trawl into the sea bed. ICES C.M. 1995/B:36

Gubbay, S. & Knapman, P.A. 1999. A review of the effects of fishing within UK European marine sites. UK Marine SACs Project. 134 pp.

Hall, S.J. 1994. Physical disturbance and marine benthic communities: life in unconsolidated sediments. *Oceanogr. Mar. Biol. Annu. Rev.*, **32**, 179–239

Hall, K., Paramor, O.A.L., Robinson, L.A., Winrow-Giffin, A., Frid, C.L.J., Eno, N.C., Dernie, K.M., Sharp, R.A.M., Wyn, G.C. & Ramsay, K. 2008. Mapping the sensitivity of benthic habitats to fishing in Welsh Waters: development of a protocol. CCW (Policy Research) Report No: 8/12. 85 pp.

Hampshire County Council. 2010. 10b Langstone and Chichester Harbours. Available at: http://www3.hants.gov.uk/10b_langstone_and_chichester_harbours.pdf [Accessed 2016, January 5th].

Haven, D.S. 1979. A study of hard and soft clam resources of Virginia. US Fish Wildl. Serv., Comm. Fish. Res. Devel. Act Final Report Contract Nos. 3-77-R-1, 3-77-R-2, 3-77-R-3, 69 pp.

Hiddink, J.G. 2003. Effects of suction-dredging for cockles on non-target fauna in the Wadden Sea. *J. Sea. Res.*, **50**, 315-323

Hiddink, J.G., Jennings, S., Kaiser, M.J., Queirós, A.M., Duplisea, D.E. & Piet, G.J. 2006a. Cumulative impacts of seabed trawl disturbance on benthic biomass, production and species richness in different habitats. *Can. J. Fish. Aquat. Sci.*, **63**, 721-736.

Hiddink, J. G., S. Jennings, and M. J. Kaiser. 2006b. Recovery status as an indicator of the large scale ecological impact of bottom trawling. *Ecosystems*, **9**, 1190–1199.

Hinz, H., Prieto, V. & Kaiser, M.J. 2009. Trawl disturbance on benthic communities: chronic effects and experimental predictions. *Ecol. Appl.*, **19**, 3, 761-773.

Howell, B.R. & Shelton, R.G.J. 1970. The effect of china clay on the bottom fauna of St Austell and Mevagissey Bays. *J. Mar. Biol. Assoc. U. K.*, **50**, 3, 593-607.

Humborstad, O.-B., Nøttestad, L., Løkkeborg, S. & Rapp, H.T. 2004. RoxAnn bottom classification system, sidescan sonar and video-sledge: spatial resolution and their use in assessing trawling impacts. *ICES J. Mar. Sci.*, **61**, 53-63.

ICES. 1992. Report of the study group on ecosystem effects of fishing activities. ICES C.M.1992/G:11.

Jennings, S., Dinmore, T.A., Duplesea, D.E., Warr, K.J. & Lancaster, J.E. 2001. Trawling disturbance can modify benthic production processes. *J. Anim. Ecol.*, **70**, 459–475.

Jennings, S. & Kaiser, M.J., 1998. The effects of fishing on marine ecosystems. *Adv. Mar. Biol.*, **34**, 201–352.

Jennings, S., M.D. Nicholson, T.A. Dinmore & J. Lancaster, 2002. Effects of chronic trawling disturbance on the production of infaunal communities. *Mar. Ecol. Prog. Ser.*, **243**, 251–260.

Johnson, K.A. 2002. A review of national and international literature on the effects of fishing on benthic habitats. NOAA Tech. Memo. NMFS-F/SPO-57. 72 pp.

Jones, J.B. 1992. Environmental impact of trawling on the seabed: a review. *New Zeal. J. Mar. Freshwat. Res.*, **26**, 59-67.

Kaiser, M.J., Ramsay, K., Richardson, C.A., Spence, F.E., Brand, A.R. 2000. Chronic fishing disturbance has changed shelf sea benthic community structure. *J. Anim. Ecol.*, **69**, 494–503.

Kaiser, M.J. & Spencer, B.E. 1996. The effects of beam-trawl disturbance on infaunal communities in different habitats. *J. Anim. Ecol.*, **65**, 348-58.

Kaiser, M.J. 2014. The conflict between static gear and mobile gear in inshore fisheries – In depth analysis. Policy Department B: Structural and Cohesion Policies. European Parliament. B-1047 Brussels.

Kaiser, M.J., Clarke, K.R., Hinz, H., Austen, M.C.V., Somerfield, P.J. & Karakassis, I. 2006. Global analysis of response and recovery of benthic biota to fishing. *Mar. Ecol. Prog. Ser.*, **311**, 1-14.

Kaiser, M.J., Collie, J.S., Hall, S.J., Jennings, S. & Poiner, I.R. 2002. Modification of marine habitats by trawling activities: prognosis and solutions. *Fish and Fisheries*, **3**, 1-24.

Kaiser, M.J., D.B. Edwards & Spencer, B.E. 1996. Infaunal community changes as a result of commercial clam cultivation and harvesting. *Aquat. Living Resour.*, 9, 57-63

Kaiser, M.J., Edwards, D.B., Armstrong, P.J., Radford, K., Lough, N.E.L., Flatt, R.P. & Jones, H.D. 1998. Changes in megafaunal benthic communities in different habitats after trawling disturbance. *ICES J. Mar. Sci.*, **55**, 353-361.

Kaiser, M.J., Cheney, K., Spence, F.E., Edwards, D.B. & Radford, K. 1999. Fishing effects in northeast Atlantic shelf seas: patterns in fishing effort, diversity and community structure. VII. The effects of trawling disturbance on the fauna associated with the tubeheads of serpulid worms. *Fish. Res.*, **40**, 195-205.

Kenchington, E.L.R., Gilkinson, K.D., MacIsaac, K.G., Bourbonnais- Boyce, C., Kenchington, T.J., Smith, S.J. & Gordon, D.C. Jr. 2006. Effects of experimental otter trawling on benthic assemblages on Western Bank, northwest Atlantic Ocean. *J. Sea Res.*, **56**, 249–270

Kenchington, E. L. R., Prena, J., Gilkinson, K. D., Gordon Jr, D. C., Macisaac, K., Bourbonnais, C., Schwinghamer, P. J., Rowell, T. W., McKeown, D. L. & Vass, W. P., 2001. Effects of experimental otter trawling on the macrofauna of a sandy bottom ecosystem on the Grand Banks of Newfoundland. *Can. J. Fish. Aquat. Sci.*, **58**, 6, 1043-1057.

Kyte, M.A., Averill. P. & Hendershott, T. 1976. The impact of the hydraulic escalator shellfish harvester on an intertidal soft-shell clam flat in the Harraseeket River, Maine. Maine Dep. Mar. Res. 31 pp.

Lambert, J. & Goudreau, P. 1996. Performance of the New England hydraulic dredge for the harvest of Stimpson's surf clams (*Mactromeris polynyma*). Can. Ind. Rep. Fish. Aquat. Sci., 235. 28 pp.

Lindeboom, H.J. & S.J. de Groot, 1998. Impact II. The effects of different types of fisheries on the North Sea and Irish Sea bent hic ecosystems. NIOZ Rapport 1998-1. 404 pp.

Lindholm, J., Gleason, M., Kline D., Clary, L., Rienecke, S., Bell, M. & Kitaguchi, B. 2013. Central Coast Trawl Impact and Recovery Study: 2009-2012 Final Report. Report to the California Ocean Protection Council. 49 pp.

Løkkeborg, S. 2005. Impacts of trawling and scallop dredging on benthic habitats and communities. FAO Fisheries Technical Paper 472. Food and Agriculture Organisation of the United Nations. 69 pp.

Maier, P.P., Wendt, P.H., Roumillat, W.A., Steele, G.H., Levisen, M.V. & Van Dolah, R. 1998. Effects of subtidal mechanical clam harvesting on tidal creeks. SCDNR-MRD. 38 pp.

Main, J. & Sangster, G. I. 1979: A study of bottom trawling gear on both sand and hard ground. Scottish fisheries research report 14, 15 pp.

Main, J.; Sangster, G. I. 1981: A study of the sand clouds produced by trawl boards and their possible effect on fish capture. Scottish fisheries research report 20, 20 pp.

Manning, J.H. 1957. The Maryland softshell clam industry and its effects on tidewater resources. Md. Dep. Res. Educ. Resour. Study Rep. 11, 25 pp.

Manzi, J.J., Burrell, V.G., Klemanowicz, K.J., Hadley, N.H. & Collier, J.A. 1985. Impacts of a mechanical harvester on intertidal oyster communities in South Carolina. Final Report: Coastal Energy Impact Program Contract # CEIP-83-06. Governor's Office, Columbia (SC). 31 pp.

Maurer, D., Keck, R.T., Tinsman, J.C., Leathem, W.A. 1982. Vertical migration and mortality of benthos in dredged material: Part 111 - Polychaeta. *Mar. Environ. Res.*, **6**, 49-68.

Mayer, L.M., Schick, D.F., Findlay, R.H. & Rice, D.L. 1991. Effects of commercial dragging on sedimentary organic matter. *Mar. Environ. Res.*, **31**, 249-261.

McConnaughey, R.A., Mier, K.L. & Dew, C.B. 2000. An examination of chronic trawling on soft bottom benthos of the eastern Bering Sea. *ICES J. Mar. Sci.*, **57**, 1388-1400.

Mercaldo-Allen, R. & Goldberg, R. 2011. Review of the Ecological Effects of Dredging in the Cultivation and Harvest of Molluscan Shellfish. NOAA Technical Memorandum NMFS-NE-220. 84 pp.

MMO. 2014. Fishing gear glossary for the matrix (by gear type). Available at: www.gov.uk/government/uploads/system/uploads/attachment_data/file/314315/gearglossary_gear .pdf [Accessed 2016, 5th January].

Moran, M.J. & Stephenson, P.C. 2000. Effects of otter trawling on macrobenthos and management of demersal scalefish fisheries on the continental shelf of north-western Australia. *ICES J. Mar. Sci.*, **57**, 510-516.

Nilsson, H.C. & Rosenberg, R. 2003. Effects on marine sedimentary habitats of experimental trawling analysed by sediment profile imagery. *J. Exper. Mar. Biol. Ecol.*, **285**, 453-463.

Northeast Region EFHSC (Northeast Region Essential Fish Habitat Steering Committee). 2002. Workshop on the effects of fishing gear on marine habitats off the Northeastern United States October 23-25, 2001 Boston, MA. Northeast Fish. Sci. Cent. Ref. Doc. 02-01. 86 pp.

Olsgard, F., Schaanning, M.T., Widdicombe, S., Kendall, M.A. & Austen, M.C.V. 008. Effects of bottom trawling on ecosystem functioning. *J. Exper. Mar. Biol. Ecol.*, **66**, 123-133.

Pearson, T. H. & Barnett, P. R. O. 1987: Long-term changes in benthic populations in some west European coastal areas. *Estuaries*, **10**, 220-226.

Philippart, C.J.M. 1998. Long-term impact of bottom fisheries on several bycatch species of demersal fish and benthic invertebrates in the southeastern North Sea. *ICES J. Mar. Sci.*, **55**, 342-352.

Prena, J., Schwinghamer, P., Rowell, T.W., Gordon, Jr. D.C., Gilkinson, K.D., Vass, W.P. & McKeown, D.L. 1999. Experimental otter trawling on a sandy bottom ecosystem of the Grand Banks of Newfoundland: analysis of trawl bycatch and effect on epifauna. *Mar. Ecol. Prog. Ser.*, **181**, 107-124.

Queirós, A.M., Hiddink, J.G., Kaiser, M.J. & Hinz, H. 2006. Effects of chronic bottom trawling disturbance on benthic biomass, production and size spectra in different habitats. *J. Exp. Mar. Biol. Ecol.*, **335**, 91-103.

Ragnarsson, S.A. & Lindegarth, M. 2009. Testing hypotheses about temporary and persistent effects of otter trawling on infauna: changes in diversity rather than abundance. *Mar. Ecol. Prog. Ser.*, **385**, 51–64

Rees, H. L. & Eleftheriou, A. 1989. North Sea benthos: A review of field investigations into the biological effect of man's activities. *Journal du Conseil. Conseil international pour l'exploration de la mer*, **45**, 284-305.

Riemann, B. & Hoffman, E., 1991. Ecological consequences of dredging and bottom trawling in the Limfjord, Denmark. Marine ecology progress series. *Oldendorf*, **69**, 1, 171-178.

Roberts, C., Smith, C., Tillin, H. & Tyler-Walters, H. 2010. Review of existing approaches to evaluate marine habitat vulnerability to commercial fishing activities. Report: SC080016/R3.Environment Agency, Bristol. 150 pp.

Ruffin, K.K. 1995. The effects of hydraulic clam dredging on nearshore turbidity and light attenuation in Chesapeake, MD. MS Thesis. University of Maryland. 97 pp.

Sanchez, P., Demestre, M., Ramon, M. & Kaiser, M. J. 2000. The impact of otter trawling on mud communities in the northwestern Mediterranean. *ICES J. Mar. Sci.*, **57**, 1352–1358.

Schratzberger, M., Dinmore, T.A. & Jennings, S. 2002. Impacts of trawling on the diversity, biomass and structure of meiofauna assemblage. *Mar. Biol.*, **140**, 83-93.

Schwinghamer, P., Gordon, Jr., D.C., Rowell, T.W., Prena, J., McKeown, D.L., Sonnichsen, G. & Guigne, J.Y. 1998. Effects of experimental otter trawling on surficial sediment properties of a sandy-bottom ecosystem of the Grand Banks of Newfoundland. *Cons. Biol.*, **12**, 6, 1215-1222.

Schwinghamer, P., Guigne, J.Y. & Siu, W.C. 1996. Quantifying the impact of trawling on benthic habitat structure using high resolution acoustics and chaos theory. *Can. J. Fish. Aquat. Sci.*, **53**, 2, 288-296.

Seafish. 2015. Basic fishing methods. A comprehensive guide to commercial fishing methods. August 2015. 104 pp.

Smith, C.J., Banks, A.C. & Papadopoulou, K.N., 2007. Improving the quantitative estimation of trawling impacts from sidescan-sonar and underwater-video imagery. *ICES J. Mar. Sci.*, **64**, 1692–1701.

Smith, C.J., Papadopoulou, K.N. & Diliberto, S. 2000. Impact of otter trawling on an eastern Mediterranean commercial trawl fishing ground. *ICES J. Mar. Sci.*, **57**, 1340–1351.

Smith, C.R. & Brumsickle, S.J. 1989. The effects of patch size and substrate isolation on colonization modes and rates in an intertidal sediment. *Limnol. Oceanogr.*, **34**, 1263–1277.

Tarnowski, M. 2006. A literature review of the ecological effects of hydraulic escalator dredging. Fish. Tech. Rep. Ser. 48. 30 pp.

Thrush, S.F. & Dayton, P.K. 2002. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. *Annu. Rev. Ecol. Syst.*, **33**, 449-473.

Tillin, H.M., Hull, S.C. & Tyler-Walters, H. 2010. Development of a Sensitivity Matrix (pressures-MCZ/MPA features). Report to the Department of Environment, Food and Rural Affairs (DEFRA) from ABPMer, Southampton and the Marine Life Information Network (MarLIN) Plymouth: Marine Biological Association of the UK. Defra Contract No. MB0102 Task 3A, Report No. 22. 947 pp.

Trimmer, M., Petersen, J., Sivyer, D.B., Mills, C., Young, E. & Parker, E.R. 2005. Impact of long-term benthic trawl disturbance on sediment sorting and biogeochemistry in the southern North Sea. *Mar. Ecol. Prog. Ser.* **298**, 79–94.

Tuck, I.D., Hall, S.J., Robertson, M.R., Armstrong, E. & Basford, D.J. 1998. Effects of physical trawling disturbance in a previously unfished sheltered Scottish sea loch. *Mar. Ecol. Progr. Ser.*, **162**, 227-42.

Van Dolah, R. F., Wendt, P. H. & Levisen, M. V., 1991. A study of the effects of shrimp trawling on benthic communities in two South Carolina sounds. *Fish. Res.*, **12**, 2, 139-156.

Vining, R. 1978. Final Environmental Impact Statement for the Commercial Harvesting of Subtidal Hardshell Clams with a Hydraulic Escalator Shellfish Harvester. WA Dep. Fish., Dep. Nat. Resour. 55 pp.

Wallace, D.H. & Hoff, T.B. 2005. Hydraulic clam dredge effects on benthic habitat off the northeastern United States. American Fisheries Society Symposium 41, Bethesda, MD, pp. 691-693.

Wheeler, R., Stillman, R.A.S. & Herbert, R.J.H. 2014. Ecological impacts of clam and cockle harvesting on benthic habitats and waterfowl. Report to Natural England. Bournemouth University. 42pp.

Annex 2: The Key Principles of the SEMS Management Scheme (http://www.solentems.org.uk/sems/management_scheme/)

Principle 1 - Favourable Condition

The SEMS has qualified for designation against the background of current use and there is a working assumption that the features for which the site is designated are in favourable condition from the time of designation. The Management Scheme and the monitoring to be carried out by 2006 will test this assumption.

Principle 2 - Sustainable Development

The aim of the Management Scheme is not to exclude human activities from SEMS, but rather to ensure that they are undertaken in ways which do not threaten the nature conservation interest, and wherever possible, in ways that support it. The Management Scheme should ensure a balance of social, economic and environmental objectives when considering the management of activities within the Solent.

Principle 3 - Regulatory Use of Bye-laws

New bye-laws may be used as a regulatory mechanism for the SEMS. These should only be introduced into the Management Scheme when all other options have been considered and it is the only effective solution.

Principle 4 - Links to Existing Management and Other Plans/Initiative

Where appropriate the SEMS Management Scheme will directly utilise management actions from other existing management plans. The actions identified in the Management Scheme will therefore serve to inform and support existing management effects rather than duplicate them. The management measures identified in other plans will remain the mechanism through which these are to be implemented.

Principle 5 - Onus of Proof

The wording for principle 5 is based on the following three-stage process:

- Stage 1 Evidence must be established that a site feature is in deterioration. This evidence must be scientific, credible and unambiguous but it need not originate from English Nature itself. It is acknowledged that other Relevant Authorities will be undertaking monitoring regimes and if their programmes flag up something of interest, it would be expected that they would present it to English Nature for further comment and verification.
- Stage 2 English Nature, as the Government's body with responsibility for nature conservation, must believe that a site feature is in deterioration. If the evidence to support this view has come from their own monitoring - or if it has come from an external, authoritative source - EN should act as a conduit to demonstrate this fact to the Relevant Authority with responsibility for the management of the activity suspected of having detrimental effect.
- Stage 3 English Nature and the Relevant Authority (ies) involved should work together to establish any cause and effect relationship. From this, changes to management actions may be made.

Consideration of this process had led to the following definition of onus of proof: If through their own site condition monitoring programme or that of another Relevant Authority, English Nature can demonstrate that they have reasonable evidence to indicate that a deterioration in the condition of a SEMS feature or species exists, then English Nature and the Relevant Authorities concerned will work together to identify any cause and effect relationship.

Principle 6 - Management Actions

Where reasonable evidence is found to clearly demonstrate the cause and effect relationship the Relevant Authorities involved will instigate changes to the management of the activity, which will be within a RAs statutory obligations and will provide a solution that is in accordance with the Regulations and be fair, balanced, proportionate and appropriate to the site and the activity. Where the cause and effect relationship is uncertain but deterioration in the condition is still significant the Relevant Authorities should consider any potential changes in management practices in light of the precautionary principle* and the cost effectiveness of proposed measures in preventing damage. However, the precautionary principle should not be used to prevent existing management actions continuing where there is no evidence of real risk of deterioration or significant disturbance to site features.

All forms of environmental risk should be tested against the precautionary principle which means that where there are real risks to the site, lack of full scientific certainty should not be used as a reason for postponing measures that are likely to be cost effective in preventing such damage. It does not however imply that the suggested cause of such damage must be eradicated unless proved to be harmless and it cannot be used as a licence to invent hypothetical consequences. Moreover, it is important, when considering whether information available is sufficient, to take account of the associated balance of likely costs, including environmental costs, and benefits." (DETR & the Welsh Office, 1998).

Annex 3: Site Feature/Sub-feature Map(s) for Solent Maritime SAC (Langstone and Chichester Harbours portion)

HRA Template v1.1

© Crown Copyright. Not to be used for navigation.

Annex 4: Fishing Activity Map(s) using Trawl Sightings Data from 2005-2015 (2005-2010 & 2011-2015) in Langstone Harbour.

© Crown Copyright. Not to be used for navigation.

Annex 5: Co-Location of Fishing Activity using Trawl Sightings (2005 to 2015, broken down by 2005-2010 & 2011-2015) and Site Feature(s)/Sub-feature(s) (Langstone Harbour)

© Crown Copyright. Not to be used for navigation.

Annex 6: Co-location of Historic Trawl Sightings (2005-2011, 2012-2015), Clam Dredging (2012-2015) Oyster Dredging (2012, 2014-2015) Sightings the Langstone and Chichester portions of the Solent Maritime SAC

© British Crown and OceanWise, 2016. All rights reserved. License No. EK001 -20160112. Not to be used for Navigation.