Times tables

Objective: I can recall times table facts

NCNMD 1: recall multiplication and division facts for multiplication tables up to 12 × 12

NPV1: count in multiples of 6, 7, 9, 25 and 1000

Teacher Input Ideas for teaching times tables:

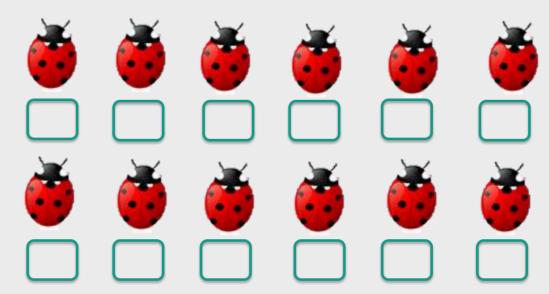
When teaching times table facts to children these principles may help:

- Showing the children arrays of objects to help them to understand how multiplication works.
- Understanding that multiplication is commutative so that the sums can be written either way. This helps to mentally work out multiplication sums as we can change the positions of the amount help. for example 2×9 may be each to count in 9s than in 2s.
- Looking for patterns such as odd and even numbers and relationships with other times tables, such as the relationship between 2 and 4 times table, 4 and 8 times table and 3 and 6 times table.
- Using knowledge of easier/more familiar times tables such as 5 and 10 to help. for example if I know that $10 \times 3 = 30$, then 9 times 3 is one group of 3 less so 30 3 = 27. If I know that $5 \times 4 = 20$, then 6 lots of 4 will be 24
- Practising counting in songs and to rhythm to help to retain the order.
- Regular repetition and practise.

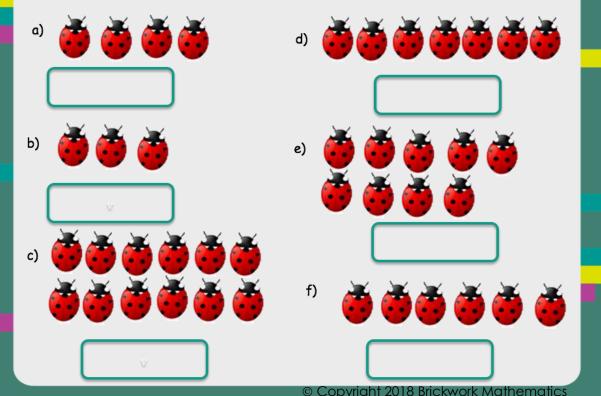
There are 3 activities provided for each of the times tables in the year 4 national curriculum: 6, 7, 9, 11, 12 and 25 Each times table has an activity for the children to count in the groups on a hundred square, read and write multiplications sums for that times table and to spot any patterns or facts about each times table.

I can count in 6s

Count in 6s using the hundred square to help. Colour in every multiple of 6.

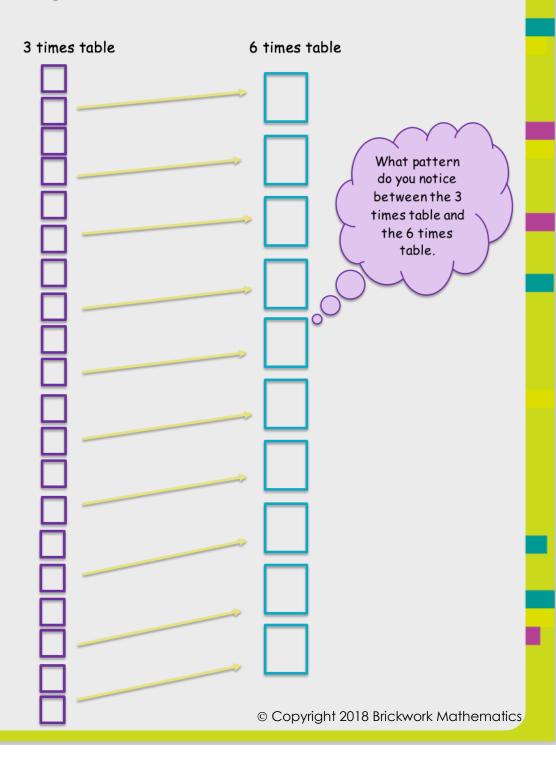

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

6 x 0 =	6 x 5 =	6 × 10 =
6 x 1 =	6 × 6 =	6 × 11 =
6 x 2 =	6 x 7 =	6 x 12 =
(2		



LO: I can count in 6s.

1) Each of these ladybird has 6 spots. Count along the ladybirds in 6s.


2) Write a multiplication sum for each set of ladybirds below:

I can spot patterns between times tables.

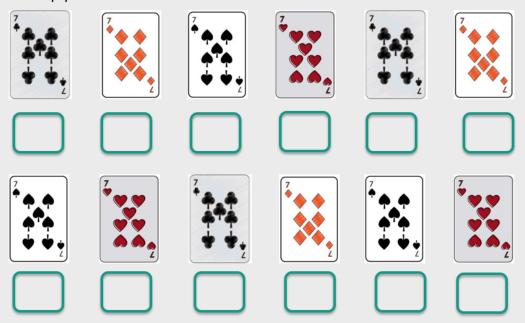
Write out your 3 times table in the purple boxes. Write out your 6 times table in the green boxes.

I can count in 7s.

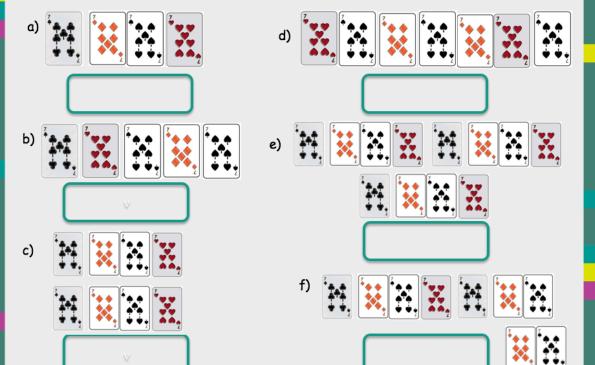
Count in 7s using the hundred square to help. Colour in every multiple of 7.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

7 x 0 =	7 x 5 =	7 × 10 =
7 x 1 =	7 x 6 =	7 × 11 =
7 x 2 =	7 x 7 =	7 x 12 =


7 x 3 =

7 x 8 =



LO: I can count in 7s.

1) The seven cards have been taken out of three packs of playing cards. Count in 7s to fill in the empty boxes.

2) Work out the product of each set of playing cards and record as a sum.

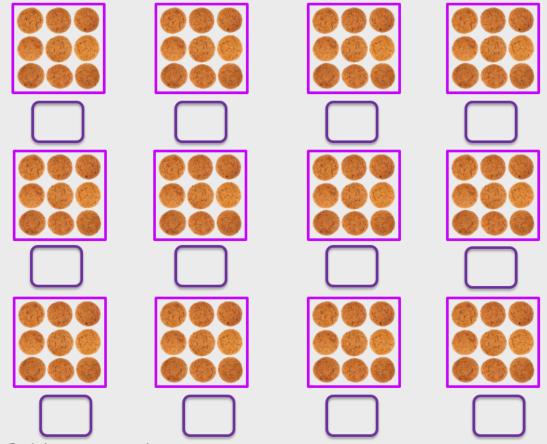
I can identify multiples of 7.

Look at each statement. Which statements are true and which are false?

	true	false
All multiples of 7 are odd		
87 is a multiple of 7		
49 is a multiple of 7		
Some multiples of 7 are even		
77 is a multiple of 7	Ш	
Write your own true statements ab	oout multiples of	· 7.
		2018 Brickwork Mathematics

I can count in 9s.

Count in 9s using the hundred square to help. Colour in every multiple of 9.


1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

9 x 1 =	9 x 5 =	9 x 9 =
9 x 2 =	9 x 6 =	9 × 10 =
9 x 3 =	9 x 7 =	9 x 11 =
9 x 4 =	9 x 8 =	9 x 12 =
	© Copyright	2018 Brickwork Mathematics

LO: I can count in 9s.

1) There are 9 biscuits in a pack. Count along all of the packs in 9s.

2) Find the answer to each sum.

9 x 2 =

9 x 0 =	9 x 12 =	9 x 7 =
9 x 3 =	9 x 9 =	9 x 6 =

9 x 1 =

9 x 4 =

I can spot patterns in my 9 times table.

Write out your 9 times table in the green boxes.

9 times table

What pattern do you notice for numbers in the 9 times table.

Things I notice about the 9 times table:

© Copyright 2018 Brickwork Mathematics

I can count in 11s.

Count in 11s using the hundred square to help. Colour in every multiple of 11.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

11 x 1 =	11 x 5 =	11 x 9 =
11 x 2 =	11 × 6 =	11 × 10 =
11 x 3 =	11 x 7 =	11 × 11 =
11 × 4 =	11 x 8 =	11 × 12=

LO: I can count in 11s.

1) There are 11 players in a football team. Count along the teams in 11s.

2) Find the answer to each sun	1.	
11 × 0 =	11 × 5 =	11 × 12 =
11 × 3 =	11 x 7 =	11 × 6 =
11 × 2 =	11 × 1 =	11 x 4 =

I can spot patterns in my 11 times table.

Write out your 11 times table in the green boxes.

11 x table

What pattern
do you notice
for numbers
under 100 in the
11times table.

Things I notice about the 11 times table:

© Copyright 2018 Brickwork Mathematics

I can count in 12s.

Count in 12s using the hundred square to help. Colour in every multiple of 12.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

12 × 1 =	12 x 5 =	12 x 9 =
12 x 2 =	12 x 6 =	12 × 10 =
12 x 3 =	12 × 7 =	12 x 11 =
12 x 4 =	12 x 8 =	12 x 12 =

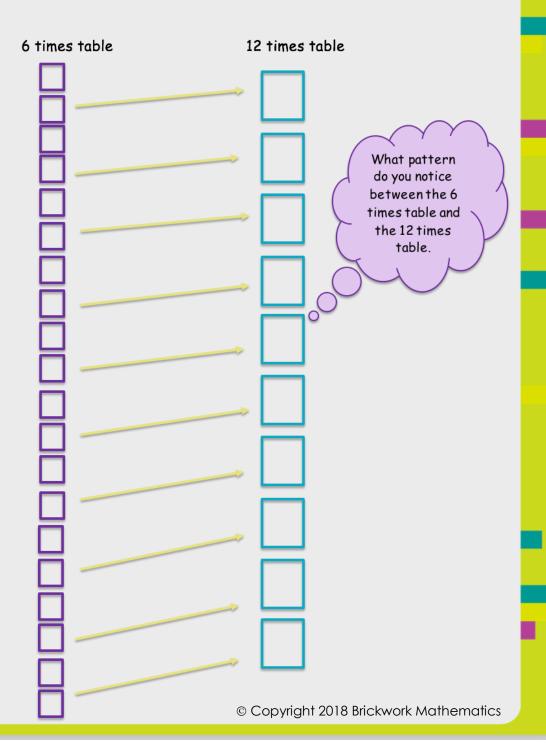
© Copyright 2018 Brickwork Mathematics

BRICKWORK mathematics

1) There are 12 cakes in a pack. Count along all of the packs in 12s.

Green Activity

LO: I can count in 12s.


	7					
21	Find	the	answer	to.	each	Sum

12 × 0 =	12 x 5 =	12 × 12 =	

I can spot patterns between times tables.

Write out your 6 times table in the purple boxes. Write out your 12 times table in the green boxes.

I can count in 25s

1) Count in 25s using the hundred squares to help. Colour in every multiple of 25.

1	2	3	4	15	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

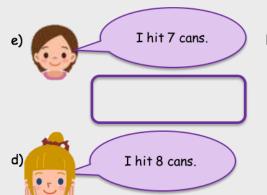
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200

201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230
231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250
251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270
271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290
291	292	293	294	295	296	297	298	299	300

2) Fill in the blocks in order counting in 25s.

LO: I can count in 25s.

At a fair, there is a game of hitting the tin cans. Each can is worth 25 points.


1) Count in 25s for each can and complete the sequence below.

25	50		125		225	

- 2) Jayden hits all of the cans. What score did he get?
- 3) Record each person's score as a sum:

I can identify multiples of 25.

Look at each statement. Which statements are true and which are false? false true All multiples of 25 are even. 175 is a multiple of 25. All multiples of 25 end in 0. 500 is a multiple of 25. A multiple of 25 cannot end in a 2. Write your own true statements about multiples of 25.