

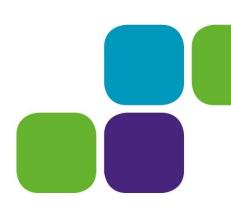
Aortic Aneurysm Disease

Mr Mark E. O'Donnell
Consultant Vascular and Endovascular Surgeon
DipSEM(GB&I) MFSEM(UK) MFSEM(RCSI&RCPI) MFSTEd MMedSc(Dist) MD
ECFMG RPVI(ARDMS) FRCSEd(Gen&VascSurg) FEBVS(Hon)

Cumbria and Lancashire Vascular and Endovascular Centre ASiT MRCS Part B (OSCE) Course – 7th September 2016

Safe | Personal | Effective

Learning Outcomes


Background – Why treat?

Therapeutic Strategies and Treatment Options.

Operative Technique.

Clinical Outcomes.

Current Research.

Definition

- Arteriomegaly Diffuse enlargement of an artery but not enough to meet criteria for an aneurysm.
- Ectasia Diffuse dilatation of an artery with increase in diameter < 50% - Aorta 2cm to 3cm.
- Aneurysm Increase in diameter of 50% (1.5x) its normal diameter – Aorta > 3cm.

Aetiology

- Aortic aneurysmal disease is a degenerative process associated with;
 - Atherosclerosis.
 - Cystic Medial Necrosis.
 - Dissection.
 - Ehlers-Danlos Syndrome.
 - Syphilis.
- Main risk factors;
 - Smoking.
 - Male gender.
 - Hypertension.

Aetiology

- Elastin degradation due to matrix metalloproteinases (2, 9 and 12) in the aortic media;
 - Increase in the collagenase and elastase activity.
 - Decrease in collagen and elastin in arterial wall.
 - Elastin becomes fragmented leading to arterial elongation and dilatation.

 Law of Laplace - Luminal dilation results in increased wall tension and a cycle of progressive dilation and increased tension.

Epidemiology

- 30-60 cases per 1000.
- Increasing incidence over past 3 decades.
- 7-8% of patients > 65 years of age.

Incidence of AAA

Autopsy	1.5-3.0%
Ultrasound Screening	3.2%
Patients with coronary artery disease	5.0%
Patients with peripheral arterial disease	10.0%
Patients with femoral / popliteal aneurysms	s 50.0%

Epidemiology

- 30-60 cases per 1000.
- Increasing incidence over past 3 decades.
- 7-8% of patients > 65 years of age.

Incidence of AAA

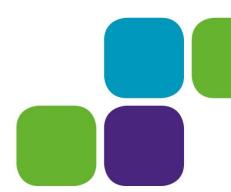
Autopsy	1.5-3.0%

Ultrasound Screening 3.2%

Patients with coronary artery disease 5.0%

Patients with peripheral arterial disease 10.0%

Patients with femoral / popliteal aneurysms 50.0%


Approximately 10% of patients with AAA will have a popliteal aneurysm

Clinical Presentation

Asymptomatic – 75%.

- Symptomatic 25%:
 - Pain.
 - Collapse.
 - Pain / Fever / Weight loss and raised inflammatory markers suggests an inflammatory aneurysm (up to 10%).

Investigation

Ultrasound


CT scan

Investigation

Ultrasound

CT scan

Beware of FAST Scans from the ED

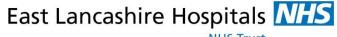
Why Treat ??

Risk of AAA rupture;

Below 5cm <2%</p>

5cm to 5.9cm

6cm to 6.9cm6.6%

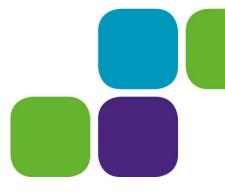

• 7cm to 7.9cm 20%

Greater than 8cm 30-50%

- UK Small Aneurysm Trial;
 - Multicentre RCT across 93 UK hospitals.
 - 1276 patients between 60-76 with AAA between 4.0 and 5.5cm.
 - Safe to monitor AAA up to 5.5cm unless tender or growth rates >1cm per year.

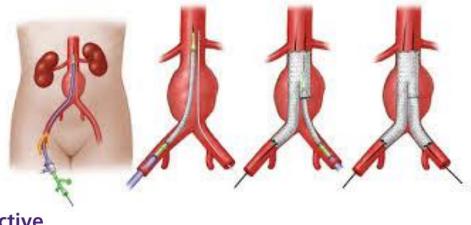
Safe Personal Effective

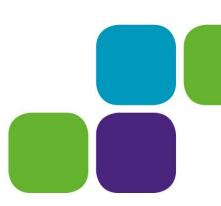
Lancet 1998; 352: 1649-55.


Aneurysm Thresholds Thoracic Aorta 6cm Abdominal Aorta 5cm 2cm Visceral Aneurysms Iliac 4cm Splenic Hepatic Femoral 3cm Renal Popliteal 2cm

Safe Personal Effective

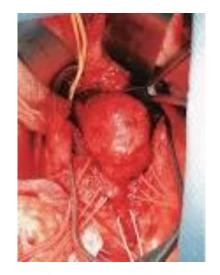
Consent

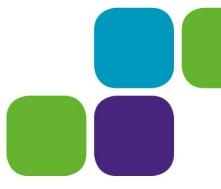

- General Local Complications;
 - Pain, Bruising, Bleeding, Wound infection.
- Systemic Complications;
 - Cardiovascular, Respiratory, Thromboembolic.
 - Renal.
- Procedural Specific Complications;
 - Graft sepsis.
 - Graft occlusion and distal ischaemia.
 - Intra-abdominal adhesions.
 - Bowel ischaemia.



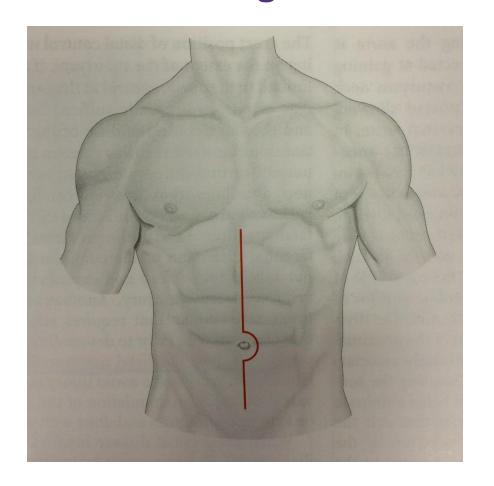
Treatment

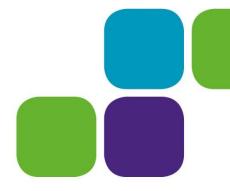
- Endovascular Repair:
 - Repair through an incision in the groin with expandable prosthesis under fluoroscopic guidance
 - Requires both surgical and radiological assistance
 - Significantly reduced morbidity.
 - Long term result unknown
 - Hospital stay 2 days, Recovery time 1-2 weeks

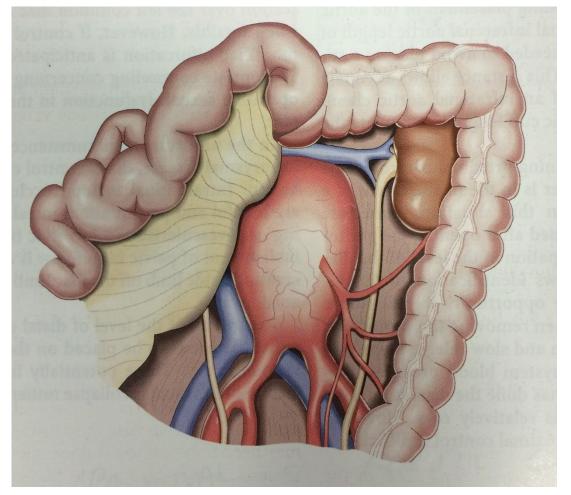


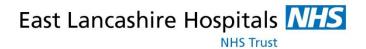

Treatment

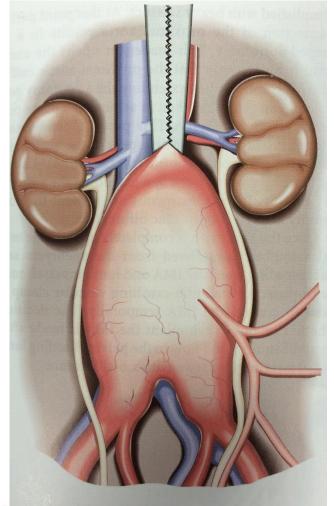
- Standard Surgical Repair:
 - Replace diseased aorta with artificial artery.
 - Requires 7 day hospital stay.
 - Recovery time 3-6 months.
 - Proven method with good long term results.

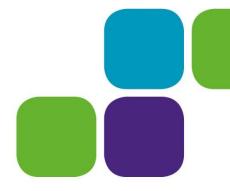


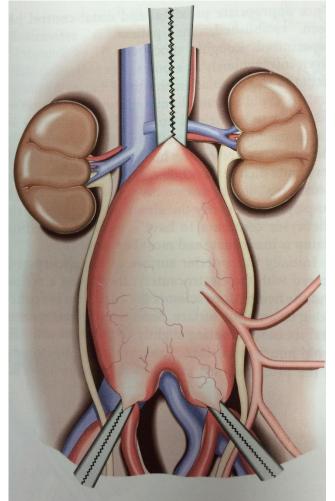


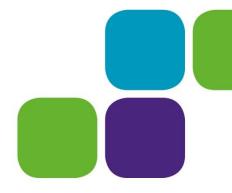

1 – Patient Positioning

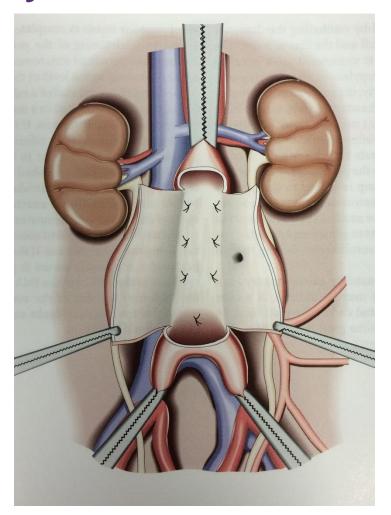


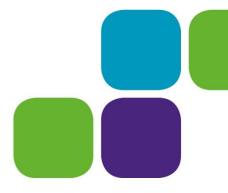

2 - Dissection down onto aorta

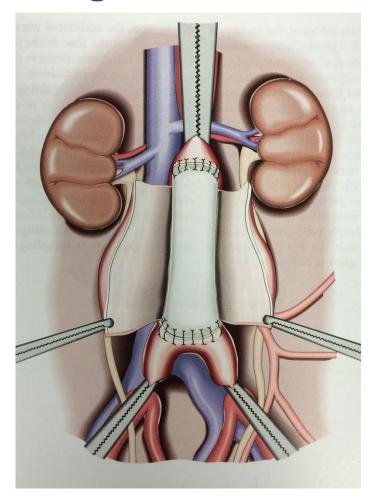


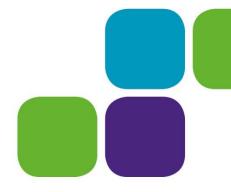

3 – Control of proximal aorta

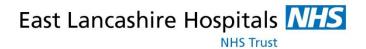


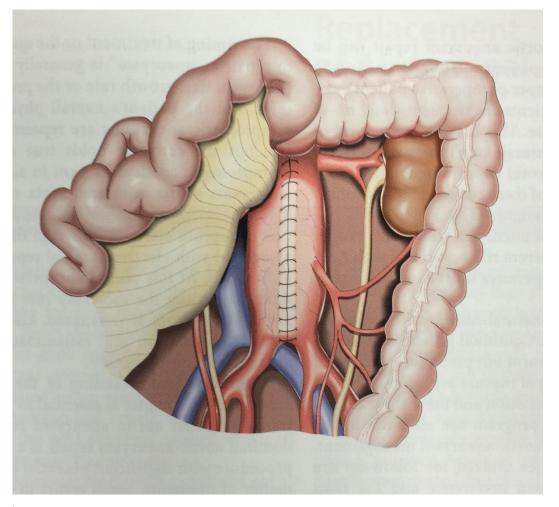

4 – Clamping of distal vessels

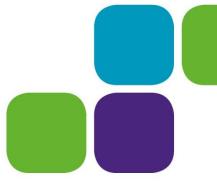



5 – Arteriotomy

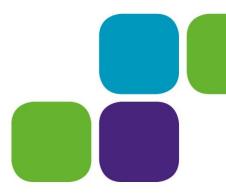





6 – Graft suturing

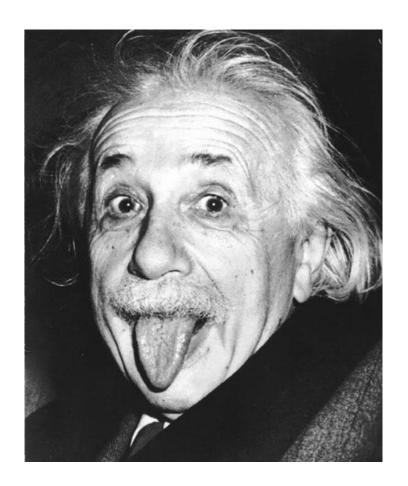


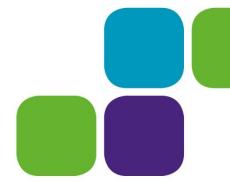
7 – Aneurysmal sac closure



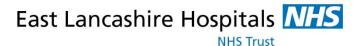
Post-procedural care

- Open AAA repair;
 - Usually POCU / HDU / ICU.
 - Clinical observations.
 - Restart medications BMT and LMWH.
 - Slow restoration of diet.
 - Out-to-sit, slowly mobilise.
 - Ward transfer and hospital stay 5-10 day


EVAR;


- Ward transfer.
- Restoration of normal diet.
- Clinical observations / Restart medications.
- Mobilise and Home day 1-2.

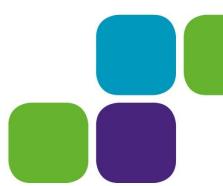
Important Literature


EVAR Trials

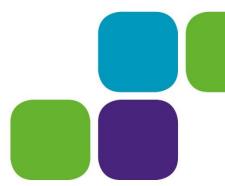
- EVAR I;
 - UK Endovascular Aneurysm Repair (EVAR) I trial evaluated fit patients.
 - 30-day mortality for EVAR was 1.7% versus 4.7% for open repair.
 - Longer term (4-years) all-cause mortality similar.

- EVAR II;
 - Unfit patients.
 - No difference between EVAR stenting and conservative patients.

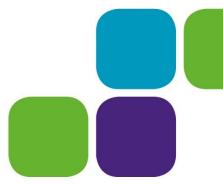
Lancet 2005; 365: 2179-92.

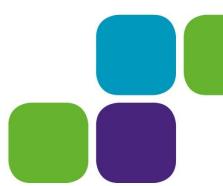

IMPROVE Trial

- 29 UK and 1 Canadian centre recruiting patients with a ruptured AAA;
 - 613 patients randomised to EVAR first strategy or open repair.
 - At one-year all-cause EVAR mortality was 41.1% versus 45.1% for open surgery.
 - EVAR patients had faster discharge with better quality of life.
 - EVAR group more cost effective.


Cases

Case 1


 64 year old male patient brought to emergency department following collapse at local shopping centre.


Case 2

 76 year old patient referred from colorectal surgery with incidental 6.9cm aortic aneurysm.

Questions

